Normal modes of a double pendulum at low energy levels

This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-02, Vol.99 (3), p.1893-1908
Hauptverfasser: Kovacic, Ivana, Zukovic, Miodrag, Radomirovic, Dragi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1908
container_issue 3
container_start_page 1893
container_title Nonlinear dynamics
container_volume 99
creator Kovacic, Ivana
Zukovic, Miodrag
Radomirovic, Dragi
description This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.
doi_str_mv 10.1007/s11071-019-05424-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371192968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371192968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTqTbDbNUYpaoehFobeQbmaLZXdTk67St3d1BW-eBob_-2f4GLtEuEYAc5MRwaAAtAJ0IQuhj9gEtVFClnZ1zCZghyVYWJ2ys5y3AKAkzCasfIqp9Q1vY6DMY809D7FfN8R31IW-6Vvu97yJn5w6SpsDb-iDmnzOTmrfZLr4nVP2en_3Ml-I5fPD4_x2KSqFdi9UQZpAYYl10EVlgpdUBEu1UcNfQYYZarIylNaD1xVhYWqitbZAngwoNWVXY-8uxfee8t5tY5-64aSTyiBaacvZkJJjqkox50S126W31qeDQ3Dfftzoxw1-3I8fpwdIjVAewt2G0l_1P9QX5IFnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371192968</pqid></control><display><type>article</type><title>Normal modes of a double pendulum at low energy levels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</creator><creatorcontrib>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</creatorcontrib><description>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05424-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Energy levels ; Engineering ; Equations of motion ; Initial conditions ; Mechanical Engineering ; Original Paper ; Oscillations ; Pendulums ; Poincare maps ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-02, Vol.99 (3), p.1893-1908</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</citedby><cites>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</cites><orcidid>0000-0002-0433-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05424-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05424-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kovacic, Ivana</creatorcontrib><creatorcontrib>Zukovic, Miodrag</creatorcontrib><creatorcontrib>Radomirovic, Dragi</creatorcontrib><title>Normal modes of a double pendulum at low energy levels</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy levels</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Initial conditions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Oscillations</subject><subject>Pendulums</subject><subject>Poincare maps</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTqTbDbNUYpaoehFobeQbmaLZXdTk67St3d1BW-eBob_-2f4GLtEuEYAc5MRwaAAtAJ0IQuhj9gEtVFClnZ1zCZghyVYWJ2ys5y3AKAkzCasfIqp9Q1vY6DMY809D7FfN8R31IW-6Vvu97yJn5w6SpsDb-iDmnzOTmrfZLr4nVP2en_3Ml-I5fPD4_x2KSqFdi9UQZpAYYl10EVlgpdUBEu1UcNfQYYZarIylNaD1xVhYWqitbZAngwoNWVXY-8uxfee8t5tY5-64aSTyiBaacvZkJJjqkox50S126W31qeDQ3Dfftzoxw1-3I8fpwdIjVAewt2G0l_1P9QX5IFnbw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kovacic, Ivana</creator><creator>Zukovic, Miodrag</creator><creator>Radomirovic, Dragi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0433-1953</orcidid></search><sort><creationdate>20200201</creationdate><title>Normal modes of a double pendulum at low energy levels</title><author>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy levels</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Initial conditions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Oscillations</topic><topic>Pendulums</topic><topic>Poincare maps</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacic, Ivana</creatorcontrib><creatorcontrib>Zukovic, Miodrag</creatorcontrib><creatorcontrib>Radomirovic, Dragi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacic, Ivana</au><au>Zukovic, Miodrag</au><au>Radomirovic, Dragi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal modes of a double pendulum at low energy levels</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>99</volume><issue>3</issue><spage>1893</spage><epage>1908</epage><pages>1893-1908</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05424-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0433-1953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-02, Vol.99 (3), p.1893-1908
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2371192968
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Energy levels
Engineering
Equations of motion
Initial conditions
Mechanical Engineering
Original Paper
Oscillations
Pendulums
Poincare maps
Vibration
title Normal modes of a double pendulum at low energy levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20modes%20of%20a%20double%20pendulum%20at%20low%20energy%20levels&rft.jtitle=Nonlinear%20dynamics&rft.au=Kovacic,%20Ivana&rft.date=2020-02-01&rft.volume=99&rft.issue=3&rft.spage=1893&rft.epage=1908&rft.pages=1893-1908&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05424-5&rft_dat=%3Cproquest_cross%3E2371192968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371192968&rft_id=info:pmid/&rfr_iscdi=true