Normal modes of a double pendulum at low energy levels
This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qual...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-02, Vol.99 (3), p.1893-1908 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1908 |
---|---|
container_issue | 3 |
container_start_page | 1893 |
container_title | Nonlinear dynamics |
container_volume | 99 |
creator | Kovacic, Ivana Zukovic, Miodrag Radomirovic, Dragi |
description | This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion. |
doi_str_mv | 10.1007/s11071-019-05424-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371192968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371192968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTqTbDbNUYpaoehFobeQbmaLZXdTk67St3d1BW-eBob_-2f4GLtEuEYAc5MRwaAAtAJ0IQuhj9gEtVFClnZ1zCZghyVYWJ2ys5y3AKAkzCasfIqp9Q1vY6DMY809D7FfN8R31IW-6Vvu97yJn5w6SpsDb-iDmnzOTmrfZLr4nVP2en_3Ml-I5fPD4_x2KSqFdi9UQZpAYYl10EVlgpdUBEu1UcNfQYYZarIylNaD1xVhYWqitbZAngwoNWVXY-8uxfee8t5tY5-64aSTyiBaacvZkJJjqkox50S126W31qeDQ3Dfftzoxw1-3I8fpwdIjVAewt2G0l_1P9QX5IFnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371192968</pqid></control><display><type>article</type><title>Normal modes of a double pendulum at low energy levels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</creator><creatorcontrib>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</creatorcontrib><description>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05424-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Energy levels ; Engineering ; Equations of motion ; Initial conditions ; Mechanical Engineering ; Original Paper ; Oscillations ; Pendulums ; Poincare maps ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-02, Vol.99 (3), p.1893-1908</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</citedby><cites>FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</cites><orcidid>0000-0002-0433-1953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05424-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05424-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kovacic, Ivana</creatorcontrib><creatorcontrib>Zukovic, Miodrag</creatorcontrib><creatorcontrib>Radomirovic, Dragi</creatorcontrib><title>Normal modes of a double pendulum at low energy levels</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy levels</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Initial conditions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Oscillations</subject><subject>Pendulums</subject><subject>Poincare maps</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTqTbDbNUYpaoehFobeQbmaLZXdTk67St3d1BW-eBob_-2f4GLtEuEYAc5MRwaAAtAJ0IQuhj9gEtVFClnZ1zCZghyVYWJ2ys5y3AKAkzCasfIqp9Q1vY6DMY809D7FfN8R31IW-6Vvu97yJn5w6SpsDb-iDmnzOTmrfZLr4nVP2en_3Ml-I5fPD4_x2KSqFdi9UQZpAYYl10EVlgpdUBEu1UcNfQYYZarIylNaD1xVhYWqitbZAngwoNWVXY-8uxfee8t5tY5-64aSTyiBaacvZkJJjqkox50S126W31qeDQ3Dfftzoxw1-3I8fpwdIjVAewt2G0l_1P9QX5IFnbw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kovacic, Ivana</creator><creator>Zukovic, Miodrag</creator><creator>Radomirovic, Dragi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0433-1953</orcidid></search><sort><creationdate>20200201</creationdate><title>Normal modes of a double pendulum at low energy levels</title><author>Kovacic, Ivana ; Zukovic, Miodrag ; Radomirovic, Dragi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-34e5e03161fd54c7da2e4d9ef73269d2d815e92d69a0a5ce147feeb590eae7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy levels</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Initial conditions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Oscillations</topic><topic>Pendulums</topic><topic>Poincare maps</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacic, Ivana</creatorcontrib><creatorcontrib>Zukovic, Miodrag</creatorcontrib><creatorcontrib>Radomirovic, Dragi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacic, Ivana</au><au>Zukovic, Miodrag</au><au>Radomirovic, Dragi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal modes of a double pendulum at low energy levels</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>99</volume><issue>3</issue><spage>1893</spage><epage>1908</epage><pages>1893-1908</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study is concerned with a double pendulum and its regular behaviour associated with low energy levels and the influence of the associated initial conditions on the frequency of normal modes. The case of nonlinear oscillations described by the exact equations of motion is examined. A global qualitative insight is provided via energy diagrams and Poincaré maps. Then, the case of linear oscillations, their normal modes and associated frequencies is analysed. Further, quantitative insights via two approaches (Lindstedt–Poincaré method and harmonic balancing) are also achieved to determine analytically the influence of initial amplitudes on the existence and frequency of nonlinear normal modes. These results are compared with the one corresponding to the linear normal modes as well as with the corresponding numerical solutions of the exact equations of motion.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05424-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0433-1953</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-02, Vol.99 (3), p.1893-1908 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2371192968 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Energy levels Engineering Equations of motion Initial conditions Mechanical Engineering Original Paper Oscillations Pendulums Poincare maps Vibration |
title | Normal modes of a double pendulum at low energy levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20modes%20of%20a%20double%20pendulum%20at%20low%20energy%20levels&rft.jtitle=Nonlinear%20dynamics&rft.au=Kovacic,%20Ivana&rft.date=2020-02-01&rft.volume=99&rft.issue=3&rft.spage=1893&rft.epage=1908&rft.pages=1893-1908&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05424-5&rft_dat=%3Cproquest_cross%3E2371192968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371192968&rft_id=info:pmid/&rfr_iscdi=true |