Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks
This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning network...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2019-12, Vol.53 (8), p.1006-1011 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 8 |
container_start_page | 1006 |
container_title | Automatic control and computer sciences |
container_volume | 53 |
creator | Krundyshev, V. M. |
description | This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided. |
doi_str_mv | 10.3103/S014641161908011X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371172651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371172651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMQf84thxRlS-KrUwFKRukeM8l5TWKbYrlH9PoiIxIKY33HPPky4hl8CuOTB-s2CQyQxAQsEUA1gekREIoRJganlMRkOcDPkpOQthzVifKTkiy2mNLja2a9yKTroKfXz3qGOgjaPztkbv6NTV-xB9ozd00YWI20Crjs5Ru0BbS-8Qd8kMtXeD4xnjV-s_wjk5sXoT8OLnjsnbw_3r5CmZvTxOJ7ezxHCZxaSyeW0sSAVFLQtjJBpRGKXy2hqbq8pwpqUWKSAX2gAUHLhQOsuxqDC3wMfk6uDd-fZzjyGW63bvXf-yTHkOkKdSDBQcKOPbEDzacuebrfZdCawcBiz_DNh30kMn9Kxbof81_1_6Br2rcwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371172651</pqid></control><display><type>article</type><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><source>Springer Nature - Complete Springer Journals</source><creator>Krundyshev, V. M.</creator><creatorcontrib>Krundyshev, V. M.</creatorcontrib><description>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S014641161908011X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial intelligence ; Computer Science ; Control Structures and Microprogramming ; Deep learning</subject><ispartof>Automatic control and computer sciences, 2019-12, Vol.53 (8), p.1006-1011</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>2019© Allerton Press, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</citedby><cites>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S014641161908011X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S014641161908011X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krundyshev, V. M.</creatorcontrib><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMQf84thxRlS-KrUwFKRukeM8l5TWKbYrlH9PoiIxIKY33HPPky4hl8CuOTB-s2CQyQxAQsEUA1gekREIoRJganlMRkOcDPkpOQthzVifKTkiy2mNLja2a9yKTroKfXz3qGOgjaPztkbv6NTV-xB9ozd00YWI20Crjs5Ru0BbS-8Qd8kMtXeD4xnjV-s_wjk5sXoT8OLnjsnbw_3r5CmZvTxOJ7ezxHCZxaSyeW0sSAVFLQtjJBpRGKXy2hqbq8pwpqUWKSAX2gAUHLhQOsuxqDC3wMfk6uDd-fZzjyGW63bvXf-yTHkOkKdSDBQcKOPbEDzacuebrfZdCawcBiz_DNh30kMn9Kxbof81_1_6Br2rcwU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Krundyshev, V. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><author>Krundyshev, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krundyshev, V. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krundyshev, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>53</volume><issue>8</issue><spage>1006</spage><epage>1011</epage><pages>1006-1011</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S014641161908011X</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2019-12, Vol.53 (8), p.1006-1011 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2371172651 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial intelligence Computer Science Control Structures and Microprogramming Deep learning |
title | Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Cyberthreats%20in%20Modern%20Industrial%20Systems%20by%20Means%20of%20Deep-Learning%20Networks&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Krundyshev,%20V.%20M.&rft.date=2019-12-01&rft.volume=53&rft.issue=8&rft.spage=1006&rft.epage=1011&rft.pages=1006-1011&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S014641161908011X&rft_dat=%3Cproquest_cross%3E2371172651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371172651&rft_id=info:pmid/&rfr_iscdi=true |