Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks

This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2019-12, Vol.53 (8), p.1006-1011
1. Verfasser: Krundyshev, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 8
container_start_page 1006
container_title Automatic control and computer sciences
container_volume 53
creator Krundyshev, V. M.
description This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.
doi_str_mv 10.3103/S014641161908011X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371172651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371172651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMQf84thxRlS-KrUwFKRukeM8l5TWKbYrlH9PoiIxIKY33HPPky4hl8CuOTB-s2CQyQxAQsEUA1gekREIoRJganlMRkOcDPkpOQthzVifKTkiy2mNLja2a9yKTroKfXz3qGOgjaPztkbv6NTV-xB9ozd00YWI20Crjs5Ru0BbS-8Qd8kMtXeD4xnjV-s_wjk5sXoT8OLnjsnbw_3r5CmZvTxOJ7ezxHCZxaSyeW0sSAVFLQtjJBpRGKXy2hqbq8pwpqUWKSAX2gAUHLhQOsuxqDC3wMfk6uDd-fZzjyGW63bvXf-yTHkOkKdSDBQcKOPbEDzacuebrfZdCawcBiz_DNh30kMn9Kxbof81_1_6Br2rcwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371172651</pqid></control><display><type>article</type><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><source>Springer Nature - Complete Springer Journals</source><creator>Krundyshev, V. M.</creator><creatorcontrib>Krundyshev, V. M.</creatorcontrib><description>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S014641161908011X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial intelligence ; Computer Science ; Control Structures and Microprogramming ; Deep learning</subject><ispartof>Automatic control and computer sciences, 2019-12, Vol.53 (8), p.1006-1011</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>2019© Allerton Press, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</citedby><cites>FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S014641161908011X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S014641161908011X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krundyshev, V. M.</creatorcontrib><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMQf84thxRlS-KrUwFKRukeM8l5TWKbYrlH9PoiIxIKY33HPPky4hl8CuOTB-s2CQyQxAQsEUA1gekREIoRJganlMRkOcDPkpOQthzVifKTkiy2mNLja2a9yKTroKfXz3qGOgjaPztkbv6NTV-xB9ozd00YWI20Crjs5Ru0BbS-8Qd8kMtXeD4xnjV-s_wjk5sXoT8OLnjsnbw_3r5CmZvTxOJ7ezxHCZxaSyeW0sSAVFLQtjJBpRGKXy2hqbq8pwpqUWKSAX2gAUHLhQOsuxqDC3wMfk6uDd-fZzjyGW63bvXf-yTHkOkKdSDBQcKOPbEDzacuebrfZdCawcBiz_DNh30kMn9Kxbof81_1_6Br2rcwU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Krundyshev, V. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</title><author>Krundyshev, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-bf7dcf16819d69cc6ec59c887dfcf78bc30a6a521e35ac11931358a47e9be7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krundyshev, V. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krundyshev, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>53</volume><issue>8</issue><spage>1006</spage><epage>1011</epage><pages>1006-1011</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>This article presents an approach to building a system for identifying cyberthreats in modern industrial systems (IIoT, VANET, WSN) by means of artificial intelligence and deep learning. The results of the tests conducted to assess the suggested approach for efficiency based on deep-learning networks are provided.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S014641161908011X</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2019-12, Vol.53 (8), p.1006-1011
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2371172651
source Springer Nature - Complete Springer Journals
subjects Artificial intelligence
Computer Science
Control Structures and Microprogramming
Deep learning
title Identifying Cyberthreats in Modern Industrial Systems by Means of Deep-Learning Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Cyberthreats%20in%20Modern%20Industrial%20Systems%20by%20Means%20of%20Deep-Learning%20Networks&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Krundyshev,%20V.%20M.&rft.date=2019-12-01&rft.volume=53&rft.issue=8&rft.spage=1006&rft.epage=1011&rft.pages=1006-1011&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S014641161908011X&rft_dat=%3Cproquest_cross%3E2371172651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371172651&rft_id=info:pmid/&rfr_iscdi=true