Isometries between completely regular vector-valued function spaces

In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Mojahedi, Mojtaba, Sady, Fereshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mojahedi, Mojtaba
Sady, Fereshteh
description In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2370776143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370776143</sourcerecordid><originalsourceid>FETCH-proquest_journals_23707761433</originalsourceid><addsrcrecordid>eNqNykELwiAYgGEJgkbtPwidBafb7D6KuncfZt9iw6n56aJ_X4d-QKf38LwrUggpK3aohdiQEnHinItWiaaRBeku6GdIcQSkN0gvAEeNn4OFBPZNIzyy1ZEuYJKPbNE2w50O2Zk0ekcxaAO4I-tBW4Ty1y3Zn47X7sxC9M8MmPrJ5-i-1AupuFJtVUv53_UBhaM7PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370776143</pqid></control><display><type>article</type><title>Isometries between completely regular vector-valued function spaces</title><source>Free E- Journals</source><creator>Mojahedi, Mojtaba ; Sady, Fereshteh</creator><creatorcontrib>Mojahedi, Mojtaba ; Sady, Fereshteh</creatorcontrib><description>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Function space ; Norms ; Subspaces</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mojahedi, Mojtaba</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><title>Isometries between completely regular vector-valued function spaces</title><title>arXiv.org</title><description>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</description><subject>Function space</subject><subject>Norms</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELwiAYgGEJgkbtPwidBafb7D6KuncfZt9iw6n56aJ_X4d-QKf38LwrUggpK3aohdiQEnHinItWiaaRBeku6GdIcQSkN0gvAEeNn4OFBPZNIzyy1ZEuYJKPbNE2w50O2Zk0ekcxaAO4I-tBW4Ty1y3Zn47X7sxC9M8MmPrJ5-i-1AupuFJtVUv53_UBhaM7PA</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Mojahedi, Mojtaba</creator><creator>Sady, Fereshteh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200302</creationdate><title>Isometries between completely regular vector-valued function spaces</title><author>Mojahedi, Mojtaba ; Sady, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23707761433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Function space</topic><topic>Norms</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Mojahedi, Mojtaba</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mojahedi, Mojtaba</au><au>Sady, Fereshteh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isometries between completely regular vector-valued function spaces</atitle><jtitle>arXiv.org</jtitle><date>2020-03-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2370776143
source Free E- Journals
subjects Function space
Norms
Subspaces
title Isometries between completely regular vector-valued function spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isometries%20between%20completely%20regular%20vector-valued%20function%20spaces&rft.jtitle=arXiv.org&rft.au=Mojahedi,%20Mojtaba&rft.date=2020-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2370776143%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370776143&rft_id=info:pmid/&rfr_iscdi=true