Isometries between completely regular vector-valued function spaces
In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly conv...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mojahedi, Mojtaba Sady, Fereshteh |
description | In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2370776143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370776143</sourcerecordid><originalsourceid>FETCH-proquest_journals_23707761433</originalsourceid><addsrcrecordid>eNqNykELwiAYgGEJgkbtPwidBafb7D6KuncfZt9iw6n56aJ_X4d-QKf38LwrUggpK3aohdiQEnHinItWiaaRBeku6GdIcQSkN0gvAEeNn4OFBPZNIzyy1ZEuYJKPbNE2w50O2Zk0ekcxaAO4I-tBW4Ty1y3Zn47X7sxC9M8MmPrJ5-i-1AupuFJtVUv53_UBhaM7PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370776143</pqid></control><display><type>article</type><title>Isometries between completely regular vector-valued function spaces</title><source>Free E- Journals</source><creator>Mojahedi, Mojtaba ; Sady, Fereshteh</creator><creatorcontrib>Mojahedi, Mojtaba ; Sady, Fereshteh</creatorcontrib><description>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Function space ; Norms ; Subspaces</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mojahedi, Mojtaba</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><title>Isometries between completely regular vector-valued function spaces</title><title>arXiv.org</title><description>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</description><subject>Function space</subject><subject>Norms</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELwiAYgGEJgkbtPwidBafb7D6KuncfZt9iw6n56aJ_X4d-QKf38LwrUggpK3aohdiQEnHinItWiaaRBeku6GdIcQSkN0gvAEeNn4OFBPZNIzyy1ZEuYJKPbNE2w50O2Zk0ekcxaAO4I-tBW4Ty1y3Zn47X7sxC9M8MmPrJ5-i-1AupuFJtVUv53_UBhaM7PA</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Mojahedi, Mojtaba</creator><creator>Sady, Fereshteh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200302</creationdate><title>Isometries between completely regular vector-valued function spaces</title><author>Mojahedi, Mojtaba ; Sady, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23707761433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Function space</topic><topic>Norms</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Mojahedi, Mojtaba</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mojahedi, Mojtaba</au><au>Sady, Fereshteh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isometries between completely regular vector-valued function spaces</atitle><jtitle>arXiv.org</jtitle><date>2020-03-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces \(A\) and \(B\) of \(C_0(X,E)\) and \(C_0(Y,F)\) where \(X\) and \(Y\) are locally compact Hausdorff spaces and \(E\) and \(F\) are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces \(F\) satisfying a new defined property related to their \(T\)-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between \(A\) and \(B\) whenever \(A\) and \(B\) are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2370776143 |
source | Free E- Journals |
subjects | Function space Norms Subspaces |
title | Isometries between completely regular vector-valued function spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isometries%20between%20completely%20regular%20vector-valued%20function%20spaces&rft.jtitle=arXiv.org&rft.au=Mojahedi,%20Mojtaba&rft.date=2020-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2370776143%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370776143&rft_id=info:pmid/&rfr_iscdi=true |