Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant

In this work, we first study the interface instability of a fluid layer flowing down on an inclined plane under periodic oscillation having both normal and lateral components. After that, we examine the effect of an insoluble surfactant covering the free surface under normal oscillation, lateral osc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-03, Vol.32 (3)
Hauptverfasser: El Jaouahiry, Abdelouahab, Aniss, Saïd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator El Jaouahiry, Abdelouahab
Aniss, Saïd
description In this work, we first study the interface instability of a fluid layer flowing down on an inclined plane under periodic oscillation having both normal and lateral components. After that, we examine the effect of an insoluble surfactant covering the free surface under normal oscillation, lateral oscillation, and both normal and lateral oscillations. The time periodic linear system, corresponding to the governing equations, is treated using the Chebyshev spectral collocation method for spatial resolution, and for temporal resolution, we use the Floquet theory. We show that the stabilizing effect of normal oscillation amplitude on the gravitational instability, reported by Woods and Lin [J. Fluid Mech. 294, 391 (1995)], is strengthened by introducing lateral oscillation, and this contributes to the complete suppression of this instability. The harmonic and subharmonic zones, initially stable in the work of Woods and Lin [J. Fluid Mech. 294, 391 (1995)], are destabilized by the lateral oscillation, and the first unstable parametric resonance becomes without threshold. Conversely, the unstable domain of the gravitational instability and the second resonance zone reported by Lin, Chen, and Woods [Phys. Fluids 8, 3247 (1996)] can be reduced by introducing normal oscillation. Finally, we show that the surfactant has a stabilizing effect that contributes to accelerate the suppression of the gravitational instability and opposes the destabilizing effect of the lateral oscillation on the first subharmonic resonance to give rise to a competition between the two effects.
doi_str_mv 10.1063/1.5138982
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2370739696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370739696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-50d3260c88f104c13d63de4ac5d405444da1b32f207b73c5bdabbe9cffddcd603</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgCo6jC98g4EqhYy5t2i5l8AYDbnRd0lyYDGnSSVKGeR5f1Mxl7So_4csJ_AeAe4wWGDH6jBcVpk3bkAsww6hpi5oxdnnINSoYo_ga3MS4QQjRlrAZ-F0Zp3iAMfHeWJP2kDtu99FE6DXk0JrtZCTUxg5Q-p2D3mUBjRM2P5RwtNwpODmpAvRRGGt5MtnsTFpD58PAbfYS5msVchZ-GL1TLsU8A6a1gmNQUTmhjoz3p5z_jlPQXCTu0i240txGdXc-5-Dn7fV7-VGsvt4_ly-rQpCWpKJCkhKGRNNojEqBqWRUqpKLSpaoKstSctxTogmq-5qKqpe871UrtJZSSIboHDyc5o7BbycVU7fxU8h1xI7QGtW0ZS3L6vGkRPAxBqW7MZiBh32HUXfYQYe78w6yfTrZ3Ew6FvMP_gMGAYoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370739696</pqid></control><display><type>article</type><title>Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>El Jaouahiry, Abdelouahab ; Aniss, Saïd</creator><creatorcontrib>El Jaouahiry, Abdelouahab ; Aniss, Saïd</creatorcontrib><description>In this work, we first study the interface instability of a fluid layer flowing down on an inclined plane under periodic oscillation having both normal and lateral components. After that, we examine the effect of an insoluble surfactant covering the free surface under normal oscillation, lateral oscillation, and both normal and lateral oscillations. The time periodic linear system, corresponding to the governing equations, is treated using the Chebyshev spectral collocation method for spatial resolution, and for temporal resolution, we use the Floquet theory. We show that the stabilizing effect of normal oscillation amplitude on the gravitational instability, reported by Woods and Lin [J. Fluid Mech. 294, 391 (1995)], is strengthened by introducing lateral oscillation, and this contributes to the complete suppression of this instability. The harmonic and subharmonic zones, initially stable in the work of Woods and Lin [J. Fluid Mech. 294, 391 (1995)], are destabilized by the lateral oscillation, and the first unstable parametric resonance becomes without threshold. Conversely, the unstable domain of the gravitational instability and the second resonance zone reported by Lin, Chen, and Woods [Phys. Fluids 8, 3247 (1996)] can be reduced by introducing normal oscillation. Finally, we show that the surfactant has a stabilizing effect that contributes to accelerate the suppression of the gravitational instability and opposes the destabilizing effect of the lateral oscillation on the first subharmonic resonance to give rise to a competition between the two effects.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5138982</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chebyshev approximation ; Collocation methods ; Fluid dynamics ; Fluids ; Free surfaces ; Gravitation ; Gravitational instability ; Interface stability ; Lateral oscillation ; Lateral stability ; Physics ; Resonance ; Spatial resolution ; Stability analysis ; Surfactants ; Temporal resolution</subject><ispartof>Physics of fluids (1994), 2020-03, Vol.32 (3)</ispartof><rights>Crown</rights><rights>2020Crown</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-50d3260c88f104c13d63de4ac5d405444da1b32f207b73c5bdabbe9cffddcd603</citedby><cites>FETCH-LOGICAL-c292t-50d3260c88f104c13d63de4ac5d405444da1b32f207b73c5bdabbe9cffddcd603</cites><orcidid>0000-0002-8700-974X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>El Jaouahiry, Abdelouahab</creatorcontrib><creatorcontrib>Aniss, Saïd</creatorcontrib><title>Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant</title><title>Physics of fluids (1994)</title><description>In this work, we first study the interface instability of a fluid layer flowing down on an inclined plane under periodic oscillation having both normal and lateral components. After that, we examine the effect of an insoluble surfactant covering the free surface under normal oscillation, lateral oscillation, and both normal and lateral oscillations. The time periodic linear system, corresponding to the governing equations, is treated using the Chebyshev spectral collocation method for spatial resolution, and for temporal resolution, we use the Floquet theory. We show that the stabilizing effect of normal oscillation amplitude on the gravitational instability, reported by Woods and Lin [J. Fluid Mech. 294, 391 (1995)], is strengthened by introducing lateral oscillation, and this contributes to the complete suppression of this instability. The harmonic and subharmonic zones, initially stable in the work of Woods and Lin [J. Fluid Mech. 294, 391 (1995)], are destabilized by the lateral oscillation, and the first unstable parametric resonance becomes without threshold. Conversely, the unstable domain of the gravitational instability and the second resonance zone reported by Lin, Chen, and Woods [Phys. Fluids 8, 3247 (1996)] can be reduced by introducing normal oscillation. Finally, we show that the surfactant has a stabilizing effect that contributes to accelerate the suppression of the gravitational instability and opposes the destabilizing effect of the lateral oscillation on the first subharmonic resonance to give rise to a competition between the two effects.</description><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Fluid dynamics</subject><subject>Fluids</subject><subject>Free surfaces</subject><subject>Gravitation</subject><subject>Gravitational instability</subject><subject>Interface stability</subject><subject>Lateral oscillation</subject><subject>Lateral stability</subject><subject>Physics</subject><subject>Resonance</subject><subject>Spatial resolution</subject><subject>Stability analysis</subject><subject>Surfactants</subject><subject>Temporal resolution</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90ctKxDAUBuAgCo6jC98g4EqhYy5t2i5l8AYDbnRd0lyYDGnSSVKGeR5f1Mxl7So_4csJ_AeAe4wWGDH6jBcVpk3bkAsww6hpi5oxdnnINSoYo_ga3MS4QQjRlrAZ-F0Zp3iAMfHeWJP2kDtu99FE6DXk0JrtZCTUxg5Q-p2D3mUBjRM2P5RwtNwpODmpAvRRGGt5MtnsTFpD58PAbfYS5msVchZ-GL1TLsU8A6a1gmNQUTmhjoz3p5z_jlPQXCTu0i240txGdXc-5-Dn7fV7-VGsvt4_ly-rQpCWpKJCkhKGRNNojEqBqWRUqpKLSpaoKstSctxTogmq-5qKqpe871UrtJZSSIboHDyc5o7BbycVU7fxU8h1xI7QGtW0ZS3L6vGkRPAxBqW7MZiBh32HUXfYQYe78w6yfTrZ3Ew6FvMP_gMGAYoU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>El Jaouahiry, Abdelouahab</creator><creator>Aniss, Saïd</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8700-974X</orcidid></search><sort><creationdate>20200301</creationdate><title>Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant</title><author>El Jaouahiry, Abdelouahab ; Aniss, Saïd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-50d3260c88f104c13d63de4ac5d405444da1b32f207b73c5bdabbe9cffddcd603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Fluid dynamics</topic><topic>Fluids</topic><topic>Free surfaces</topic><topic>Gravitation</topic><topic>Gravitational instability</topic><topic>Interface stability</topic><topic>Lateral oscillation</topic><topic>Lateral stability</topic><topic>Physics</topic><topic>Resonance</topic><topic>Spatial resolution</topic><topic>Stability analysis</topic><topic>Surfactants</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Jaouahiry, Abdelouahab</creatorcontrib><creatorcontrib>Aniss, Saïd</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Jaouahiry, Abdelouahab</au><au>Aniss, Saïd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this work, we first study the interface instability of a fluid layer flowing down on an inclined plane under periodic oscillation having both normal and lateral components. After that, we examine the effect of an insoluble surfactant covering the free surface under normal oscillation, lateral oscillation, and both normal and lateral oscillations. The time periodic linear system, corresponding to the governing equations, is treated using the Chebyshev spectral collocation method for spatial resolution, and for temporal resolution, we use the Floquet theory. We show that the stabilizing effect of normal oscillation amplitude on the gravitational instability, reported by Woods and Lin [J. Fluid Mech. 294, 391 (1995)], is strengthened by introducing lateral oscillation, and this contributes to the complete suppression of this instability. The harmonic and subharmonic zones, initially stable in the work of Woods and Lin [J. Fluid Mech. 294, 391 (1995)], are destabilized by the lateral oscillation, and the first unstable parametric resonance becomes without threshold. Conversely, the unstable domain of the gravitational instability and the second resonance zone reported by Lin, Chen, and Woods [Phys. Fluids 8, 3247 (1996)] can be reduced by introducing normal oscillation. Finally, we show that the surfactant has a stabilizing effect that contributes to accelerate the suppression of the gravitational instability and opposes the destabilizing effect of the lateral oscillation on the first subharmonic resonance to give rise to a competition between the two effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5138982</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8700-974X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-03, Vol.32 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2370739696
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chebyshev approximation
Collocation methods
Fluid dynamics
Fluids
Free surfaces
Gravitation
Gravitational instability
Interface stability
Lateral oscillation
Lateral stability
Physics
Resonance
Spatial resolution
Stability analysis
Surfactants
Temporal resolution
title Linear stability analysis of a liquid film down on an inclined plane under oscillation with normal and lateral components in the presence and absence of surfactant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20analysis%20of%20a%20liquid%20film%20down%20on%20an%20inclined%20plane%20under%20oscillation%20with%20normal%20and%20lateral%20components%20in%20the%20presence%20and%20absence%20of%20surfactant&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=El%20Jaouahiry,%20Abdelouahab&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5138982&rft_dat=%3Cproquest_scita%3E2370739696%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370739696&rft_id=info:pmid/&rfr_iscdi=true