A Multi-Hypothesis Approach to Color Constancy
Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regressio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hernandez-Juarez, Daniel Parisot, Sarah Busam, Benjamin Leonardis, Ales Slabaugh, Gregory McDonagh, Steven |
description | Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2370237855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370237855</sourcerecordid><originalsourceid>FETCH-proquest_journals_23702378553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwLc0pydT1qCzIL8lILc4sVnAsKCjKT0zOUCjJV3DOz8kvApJ5xSWJecmVPAysaYk5xam8UJqbQdnNNcTZQxeoo7A0tbgkPiu_tCgPKBVvZGxuAMQWQGuIUwUAzt4yEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370237855</pqid></control><display><type>article</type><title>A Multi-Hypothesis Approach to Color Constancy</title><source>Free E- Journals</source><creator>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</creator><creatorcontrib>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</creatorcontrib><description>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Cognitive tasks ; Color ; Conditional probability ; Hypotheses ; Ill posed problems ; Light sources ; Luminance distribution ; Production methods ; Spectral sensitivity ; Statistical analysis ; Supervised learning ; Target recognition ; Training</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hernandez-Juarez, Daniel</creatorcontrib><creatorcontrib>Parisot, Sarah</creatorcontrib><creatorcontrib>Busam, Benjamin</creatorcontrib><creatorcontrib>Leonardis, Ales</creatorcontrib><creatorcontrib>Slabaugh, Gregory</creatorcontrib><creatorcontrib>McDonagh, Steven</creatorcontrib><title>A Multi-Hypothesis Approach to Color Constancy</title><title>arXiv.org</title><description>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</description><subject>Cameras</subject><subject>Cognitive tasks</subject><subject>Color</subject><subject>Conditional probability</subject><subject>Hypotheses</subject><subject>Ill posed problems</subject><subject>Light sources</subject><subject>Luminance distribution</subject><subject>Production methods</subject><subject>Spectral sensitivity</subject><subject>Statistical analysis</subject><subject>Supervised learning</subject><subject>Target recognition</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwLc0pydT1qCzIL8lILc4sVnAsKCjKT0zOUCjJV3DOz8kvApJ5xSWJecmVPAysaYk5xam8UJqbQdnNNcTZQxeoo7A0tbgkPiu_tCgPKBVvZGxuAMQWQGuIUwUAzt4yEg</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Hernandez-Juarez, Daniel</creator><creator>Parisot, Sarah</creator><creator>Busam, Benjamin</creator><creator>Leonardis, Ales</creator><creator>Slabaugh, Gregory</creator><creator>McDonagh, Steven</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200302</creationdate><title>A Multi-Hypothesis Approach to Color Constancy</title><author>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23702378553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Cognitive tasks</topic><topic>Color</topic><topic>Conditional probability</topic><topic>Hypotheses</topic><topic>Ill posed problems</topic><topic>Light sources</topic><topic>Luminance distribution</topic><topic>Production methods</topic><topic>Spectral sensitivity</topic><topic>Statistical analysis</topic><topic>Supervised learning</topic><topic>Target recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Juarez, Daniel</creatorcontrib><creatorcontrib>Parisot, Sarah</creatorcontrib><creatorcontrib>Busam, Benjamin</creatorcontrib><creatorcontrib>Leonardis, Ales</creatorcontrib><creatorcontrib>Slabaugh, Gregory</creatorcontrib><creatorcontrib>McDonagh, Steven</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez-Juarez, Daniel</au><au>Parisot, Sarah</au><au>Busam, Benjamin</au><au>Leonardis, Ales</au><au>Slabaugh, Gregory</au><au>McDonagh, Steven</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Multi-Hypothesis Approach to Color Constancy</atitle><jtitle>arXiv.org</jtitle><date>2020-03-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2370237855 |
source | Free E- Journals |
subjects | Cameras Cognitive tasks Color Conditional probability Hypotheses Ill posed problems Light sources Luminance distribution Production methods Spectral sensitivity Statistical analysis Supervised learning Target recognition Training |
title | A Multi-Hypothesis Approach to Color Constancy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Multi-Hypothesis%20Approach%20to%20Color%20Constancy&rft.jtitle=arXiv.org&rft.au=Hernandez-Juarez,%20Daniel&rft.date=2020-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2370237855%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370237855&rft_id=info:pmid/&rfr_iscdi=true |