A Multi-Hypothesis Approach to Color Constancy

Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Hernandez-Juarez, Daniel, Parisot, Sarah, Busam, Benjamin, Leonardis, Ales, Slabaugh, Gregory, McDonagh, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hernandez-Juarez, Daniel
Parisot, Sarah
Busam, Benjamin
Leonardis, Ales
Slabaugh, Gregory
McDonagh, Steven
description Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2370237855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370237855</sourcerecordid><originalsourceid>FETCH-proquest_journals_23702378553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwLc0pydT1qCzIL8lILc4sVnAsKCjKT0zOUCjJV3DOz8kvApJ5xSWJecmVPAysaYk5xam8UJqbQdnNNcTZQxeoo7A0tbgkPiu_tCgPKBVvZGxuAMQWQGuIUwUAzt4yEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370237855</pqid></control><display><type>article</type><title>A Multi-Hypothesis Approach to Color Constancy</title><source>Free E- Journals</source><creator>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</creator><creatorcontrib>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</creatorcontrib><description>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Cognitive tasks ; Color ; Conditional probability ; Hypotheses ; Ill posed problems ; Light sources ; Luminance distribution ; Production methods ; Spectral sensitivity ; Statistical analysis ; Supervised learning ; Target recognition ; Training</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hernandez-Juarez, Daniel</creatorcontrib><creatorcontrib>Parisot, Sarah</creatorcontrib><creatorcontrib>Busam, Benjamin</creatorcontrib><creatorcontrib>Leonardis, Ales</creatorcontrib><creatorcontrib>Slabaugh, Gregory</creatorcontrib><creatorcontrib>McDonagh, Steven</creatorcontrib><title>A Multi-Hypothesis Approach to Color Constancy</title><title>arXiv.org</title><description>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</description><subject>Cameras</subject><subject>Cognitive tasks</subject><subject>Color</subject><subject>Conditional probability</subject><subject>Hypotheses</subject><subject>Ill posed problems</subject><subject>Light sources</subject><subject>Luminance distribution</subject><subject>Production methods</subject><subject>Spectral sensitivity</subject><subject>Statistical analysis</subject><subject>Supervised learning</subject><subject>Target recognition</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwLc0pydT1qCzIL8lILc4sVnAsKCjKT0zOUCjJV3DOz8kvApJ5xSWJecmVPAysaYk5xam8UJqbQdnNNcTZQxeoo7A0tbgkPiu_tCgPKBVvZGxuAMQWQGuIUwUAzt4yEg</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Hernandez-Juarez, Daniel</creator><creator>Parisot, Sarah</creator><creator>Busam, Benjamin</creator><creator>Leonardis, Ales</creator><creator>Slabaugh, Gregory</creator><creator>McDonagh, Steven</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200302</creationdate><title>A Multi-Hypothesis Approach to Color Constancy</title><author>Hernandez-Juarez, Daniel ; Parisot, Sarah ; Busam, Benjamin ; Leonardis, Ales ; Slabaugh, Gregory ; McDonagh, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23702378553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Cognitive tasks</topic><topic>Color</topic><topic>Conditional probability</topic><topic>Hypotheses</topic><topic>Ill posed problems</topic><topic>Light sources</topic><topic>Luminance distribution</topic><topic>Production methods</topic><topic>Spectral sensitivity</topic><topic>Statistical analysis</topic><topic>Supervised learning</topic><topic>Target recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Juarez, Daniel</creatorcontrib><creatorcontrib>Parisot, Sarah</creatorcontrib><creatorcontrib>Busam, Benjamin</creatorcontrib><creatorcontrib>Leonardis, Ales</creatorcontrib><creatorcontrib>Slabaugh, Gregory</creatorcontrib><creatorcontrib>McDonagh, Steven</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez-Juarez, Daniel</au><au>Parisot, Sarah</au><au>Busam, Benjamin</au><au>Leonardis, Ales</au><au>Slabaugh, Gregory</au><au>McDonagh, Steven</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Multi-Hypothesis Approach to Color Constancy</atitle><jtitle>arXiv.org</jtitle><date>2020-03-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2370237855
source Free E- Journals
subjects Cameras
Cognitive tasks
Color
Conditional probability
Hypotheses
Ill posed problems
Light sources
Luminance distribution
Production methods
Spectral sensitivity
Statistical analysis
Supervised learning
Target recognition
Training
title A Multi-Hypothesis Approach to Color Constancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Multi-Hypothesis%20Approach%20to%20Color%20Constancy&rft.jtitle=arXiv.org&rft.au=Hernandez-Juarez,%20Daniel&rft.date=2020-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2370237855%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370237855&rft_id=info:pmid/&rfr_iscdi=true