Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage

Recent observations show that the CO gas abundance, relative to H2, in many 1-10 Myr old protoplanetary disks may be heavily depleted by a factor of 10-100 compared to the canonical interstellar medium (ISM) value of 10−4. When and how this depletion happens can significantly affect compositions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2020-03, Vol.891 (1), p.L17
Hauptverfasser: Zhang, Ke, Schwarz, Kamber R., Bergin, Edwin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L17
container_title Astrophysical journal. Letters
container_volume 891
creator Zhang, Ke
Schwarz, Kamber R.
Bergin, Edwin A.
description Recent observations show that the CO gas abundance, relative to H2, in many 1-10 Myr old protoplanetary disks may be heavily depleted by a factor of 10-100 compared to the canonical interstellar medium (ISM) value of 10−4. When and how this depletion happens can significantly affect compositions of planetesimals and atmospheres of giant planets. It is therefore important to constrain whether the depletion occurs already at the earliest protostellar disk stage. Here we present spatially resolved observations of C18O, C17O, and 13C18O J = 2−1 lines in three protostellar disks. We show that the C18O line emits from both the disk and the inner envelope, while C17O and 13C18O lines are consistent with a disk origin. The line ratios indicate that both C18O and C17O lines are optically thick in the disk region, and only the 13C18O line is optically thin. The line profiles of the 13C18O emissions are best reproduced by Keplerian gaseous disks at similar sizes as their mm-continuum emissions, suggesting small radial separations between the gas and mm-sized grains in these disks, in contrast to the large separation commonly seen in protoplanetary disks. Assuming a gas-to-dust ratio of 100, we find that the CO gas abundances in these protostellar disks are consistent with the ISM abundance within a factor of 2, nearly one order of magnitude higher than the average value of 1-10 Myr old disks. These results suggest that there is a fast, ∼1 Myr, evolution of the abundance of CO gas from the protostellar disk stage to the protoplanetary disk stage.
doi_str_mv 10.3847/2041-8213/ab7823
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2369956944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369956944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-bf047334b134becb72e70816a96258830cd43450e45767015ada6835d04916f43</originalsourceid><addsrcrecordid>eNp9kMtLxDAQxoMouK7ePQYET9ZNmmePsq4PWFjxdY1pm2rX7KYmqeB_b0tl14N4GGaY-c03wwfAMUbnRFIxSRHFiUwxmehcyJTsgNGmtbupEdsHByEsEUoRx3IEXu51U5dw9ulsG2u3hq6Cz87qWFsDpwtYebeC8c3AO--iC9FYqz28rMM7fIj61cDotuPG6rWJ2n_9Ag7BXqVtMEc_eQyermaP05tkvri-nV7Mk4JSEZO8QlQQQnPchSlykRqBJOY64ymTkqCipIQyZCgTXCDMdKm5JKxENMO8omQMTgbdxruP1oSolq716-6kSgnPMsYz2lNooArvQvCmUo2vV93HCiPV-6h6o1Rvmhp87FbOhpXaNVvNf_DTP3DdLK2SGVZYzbFQTVmRb5g3fvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369956944</pqid></control><display><type>article</type><title>Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage</title><source>IOP Publishing Free Content</source><creator>Zhang, Ke ; Schwarz, Kamber R. ; Bergin, Edwin A.</creator><creatorcontrib>Zhang, Ke ; Schwarz, Kamber R. ; Bergin, Edwin A.</creatorcontrib><description>Recent observations show that the CO gas abundance, relative to H2, in many 1-10 Myr old protoplanetary disks may be heavily depleted by a factor of 10-100 compared to the canonical interstellar medium (ISM) value of 10−4. When and how this depletion happens can significantly affect compositions of planetesimals and atmospheres of giant planets. It is therefore important to constrain whether the depletion occurs already at the earliest protostellar disk stage. Here we present spatially resolved observations of C18O, C17O, and 13C18O J = 2−1 lines in three protostellar disks. We show that the C18O line emits from both the disk and the inner envelope, while C17O and 13C18O lines are consistent with a disk origin. The line ratios indicate that both C18O and C17O lines are optically thick in the disk region, and only the 13C18O line is optically thin. The line profiles of the 13C18O emissions are best reproduced by Keplerian gaseous disks at similar sizes as their mm-continuum emissions, suggesting small radial separations between the gas and mm-sized grains in these disks, in contrast to the large separation commonly seen in protoplanetary disks. Assuming a gas-to-dust ratio of 100, we find that the CO gas abundances in these protostellar disks are consistent with the ISM abundance within a factor of 2, nearly one order of magnitude higher than the average value of 1-10 Myr old disks. These results suggest that there is a fast, ∼1 Myr, evolution of the abundance of CO gas from the protostellar disk stage to the protoplanetary disk stage.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab7823</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Abundance ; Astrochemistry ; Carbon monoxide ; Circumstellar disks ; Depletion ; Evolution ; Interstellar matter ; Interstellar medium ; Molecular gas ; Planet formation ; Planetary atmospheres ; Planetary composition ; Protoplanetary disks ; Protoplanets ; Protostars ; Stellar evolution</subject><ispartof>Astrophysical journal. Letters, 2020-03, Vol.891 (1), p.L17</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-bf047334b134becb72e70816a96258830cd43450e45767015ada6835d04916f43</citedby><cites>FETCH-LOGICAL-c447t-bf047334b134becb72e70816a96258830cd43450e45767015ada6835d04916f43</cites><orcidid>0000-0003-4179-6394 ; 0000-0002-0661-7517 ; 0000-0002-6429-9457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab7823/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab7823$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Schwarz, Kamber R.</creatorcontrib><creatorcontrib>Bergin, Edwin A.</creatorcontrib><title>Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Recent observations show that the CO gas abundance, relative to H2, in many 1-10 Myr old protoplanetary disks may be heavily depleted by a factor of 10-100 compared to the canonical interstellar medium (ISM) value of 10−4. When and how this depletion happens can significantly affect compositions of planetesimals and atmospheres of giant planets. It is therefore important to constrain whether the depletion occurs already at the earliest protostellar disk stage. Here we present spatially resolved observations of C18O, C17O, and 13C18O J = 2−1 lines in three protostellar disks. We show that the C18O line emits from both the disk and the inner envelope, while C17O and 13C18O lines are consistent with a disk origin. The line ratios indicate that both C18O and C17O lines are optically thick in the disk region, and only the 13C18O line is optically thin. The line profiles of the 13C18O emissions are best reproduced by Keplerian gaseous disks at similar sizes as their mm-continuum emissions, suggesting small radial separations between the gas and mm-sized grains in these disks, in contrast to the large separation commonly seen in protoplanetary disks. Assuming a gas-to-dust ratio of 100, we find that the CO gas abundances in these protostellar disks are consistent with the ISM abundance within a factor of 2, nearly one order of magnitude higher than the average value of 1-10 Myr old disks. These results suggest that there is a fast, ∼1 Myr, evolution of the abundance of CO gas from the protostellar disk stage to the protoplanetary disk stage.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Carbon monoxide</subject><subject>Circumstellar disks</subject><subject>Depletion</subject><subject>Evolution</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Molecular gas</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary composition</subject><subject>Protoplanetary disks</subject><subject>Protoplanets</subject><subject>Protostars</subject><subject>Stellar evolution</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQxoMouK7ePQYET9ZNmmePsq4PWFjxdY1pm2rX7KYmqeB_b0tl14N4GGaY-c03wwfAMUbnRFIxSRHFiUwxmehcyJTsgNGmtbupEdsHByEsEUoRx3IEXu51U5dw9ulsG2u3hq6Cz87qWFsDpwtYebeC8c3AO--iC9FYqz28rMM7fIj61cDotuPG6rWJ2n_9Ag7BXqVtMEc_eQyermaP05tkvri-nV7Mk4JSEZO8QlQQQnPchSlykRqBJOY64ymTkqCipIQyZCgTXCDMdKm5JKxENMO8omQMTgbdxruP1oSolq716-6kSgnPMsYz2lNooArvQvCmUo2vV93HCiPV-6h6o1Rvmhp87FbOhpXaNVvNf_DTP3DdLK2SGVZYzbFQTVmRb5g3fvA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Ke</creator><creator>Schwarz, Kamber R.</creator><creator>Bergin, Edwin A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0002-6429-9457</orcidid></search><sort><creationdate>20200301</creationdate><title>Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage</title><author>Zhang, Ke ; Schwarz, Kamber R. ; Bergin, Edwin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-bf047334b134becb72e70816a96258830cd43450e45767015ada6835d04916f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Carbon monoxide</topic><topic>Circumstellar disks</topic><topic>Depletion</topic><topic>Evolution</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Molecular gas</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary composition</topic><topic>Protoplanetary disks</topic><topic>Protoplanets</topic><topic>Protostars</topic><topic>Stellar evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Schwarz, Kamber R.</creatorcontrib><creatorcontrib>Bergin, Edwin A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Ke</au><au>Schwarz, Kamber R.</au><au>Bergin, Edwin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>891</volume><issue>1</issue><spage>L17</spage><pages>L17-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Recent observations show that the CO gas abundance, relative to H2, in many 1-10 Myr old protoplanetary disks may be heavily depleted by a factor of 10-100 compared to the canonical interstellar medium (ISM) value of 10−4. When and how this depletion happens can significantly affect compositions of planetesimals and atmospheres of giant planets. It is therefore important to constrain whether the depletion occurs already at the earliest protostellar disk stage. Here we present spatially resolved observations of C18O, C17O, and 13C18O J = 2−1 lines in three protostellar disks. We show that the C18O line emits from both the disk and the inner envelope, while C17O and 13C18O lines are consistent with a disk origin. The line ratios indicate that both C18O and C17O lines are optically thick in the disk region, and only the 13C18O line is optically thin. The line profiles of the 13C18O emissions are best reproduced by Keplerian gaseous disks at similar sizes as their mm-continuum emissions, suggesting small radial separations between the gas and mm-sized grains in these disks, in contrast to the large separation commonly seen in protoplanetary disks. Assuming a gas-to-dust ratio of 100, we find that the CO gas abundances in these protostellar disks are consistent with the ISM abundance within a factor of 2, nearly one order of magnitude higher than the average value of 1-10 Myr old disks. These results suggest that there is a fast, ∼1 Myr, evolution of the abundance of CO gas from the protostellar disk stage to the protoplanetary disk stage.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab7823</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4179-6394</orcidid><orcidid>https://orcid.org/0000-0002-0661-7517</orcidid><orcidid>https://orcid.org/0000-0002-6429-9457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2020-03, Vol.891 (1), p.L17
issn 2041-8205
2041-8213
language eng
recordid cdi_proquest_journals_2369956944
source IOP Publishing Free Content
subjects Abundance
Astrochemistry
Carbon monoxide
Circumstellar disks
Depletion
Evolution
Interstellar matter
Interstellar medium
Molecular gas
Planet formation
Planetary atmospheres
Planetary composition
Protoplanetary disks
Protoplanets
Protostars
Stellar evolution
title Rapid Evolution of Volatile CO from the Protostellar Disk Stage to the Protoplanetary Disk Stage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Evolution%20of%20Volatile%20CO%20from%20the%20Protostellar%20Disk%20Stage%20to%20the%20Protoplanetary%20Disk%20Stage&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Zhang,%20Ke&rft.date=2020-03-01&rft.volume=891&rft.issue=1&rft.spage=L17&rft.pages=L17-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab7823&rft_dat=%3Cproquest_O3W%3E2369956944%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369956944&rft_id=info:pmid/&rfr_iscdi=true