Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable

The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2007-04, Vol.48 (2), p.179-195
Hauptverfasser: Al-Saleh, Mohammad Fraiwan, Al-Ananbeh, Ahmad Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 179
container_title Statistical papers (Berlin, Germany)
container_volume 48
creator Al-Saleh, Mohammad Fraiwan
Al-Ananbeh, Ahmad Mohammad
description The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00362-006-0325-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_236992237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315595321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhC0EEqXwANws7oa1TRLniKryI1XiAmfLsdc0JYmL7RZ4exIKp9FqRrOaj5BLDtccoLpJALIUDKBkIEXB1BGZ8ZJLVle1OiYzqKVgBYjylJyltAHgSimYkbhMue1NbsNAg6d5jbRHM6T_o2n3JrYmIx1C7E1Hd6kd3mgf9pPgV47YI41meEdHE2aaTL_tJu-zzWtqw2BD32YzZPpb1HR4Tk686RJe_OmcvN4vXxaPbPX88LS4WzErQWaGtlANGOdKEFjdCsE5GCUL76wXWHtusHLCWPDIx3HWGagUKs6NaJx3pZyTq0PvNoaPHaasN2EXh_GlFrKsayFkNYb4IWRjSCmi19s48ojfmoOeyOoDWT2S1RNZreQPr3tung</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236992237</pqid></control><display><type>article</type><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</creator><creatorcontrib>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</creatorcontrib><description>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-006-0325-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Estimating techniques ; Normal distribution ; Random variables ; Sample size ; Sampling techniques ; Statistics ; Studies</subject><ispartof>Statistical papers (Berlin, Germany), 2007-04, Vol.48 (2), p.179-195</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</citedby><cites>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Al-Saleh, Mohammad Fraiwan</creatorcontrib><creatorcontrib>Al-Ananbeh, Ahmad Mohammad</creatorcontrib><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><title>Statistical papers (Berlin, Germany)</title><description>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</description><subject>Estimating techniques</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sampling techniques</subject><subject>Statistics</subject><subject>Studies</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo1kM1OwzAQhC0EEqXwANws7oa1TRLniKryI1XiAmfLsdc0JYmL7RZ4exIKp9FqRrOaj5BLDtccoLpJALIUDKBkIEXB1BGZ8ZJLVle1OiYzqKVgBYjylJyltAHgSimYkbhMue1NbsNAg6d5jbRHM6T_o2n3JrYmIx1C7E1Hd6kd3mgf9pPgV47YI41meEdHE2aaTL_tJu-zzWtqw2BD32YzZPpb1HR4Tk686RJe_OmcvN4vXxaPbPX88LS4WzErQWaGtlANGOdKEFjdCsE5GCUL76wXWHtusHLCWPDIx3HWGagUKs6NaJx3pZyTq0PvNoaPHaasN2EXh_GlFrKsayFkNYb4IWRjSCmi19s48ojfmoOeyOoDWT2S1RNZreQPr3tung</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Al-Saleh, Mohammad Fraiwan</creator><creator>Al-Ananbeh, Ahmad Mohammad</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200704</creationdate><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><author>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Estimating techniques</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sampling techniques</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Saleh, Mohammad Fraiwan</creatorcontrib><creatorcontrib>Al-Ananbeh, Ahmad Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Saleh, Mohammad Fraiwan</au><au>Al-Ananbeh, Ahmad Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2007-04</date><risdate>2007</risdate><volume>48</volume><issue>2</issue><spage>179</spage><epage>195</epage><pages>179-195</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00362-006-0325-8</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2007-04, Vol.48 (2), p.179-195
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_236992237
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Estimating techniques
Normal distribution
Random variables
Sample size
Sampling techniques
Statistics
Studies
title Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20means%20of%20the%20bivariate%20normal%20using%20moving%20extreme%20ranked%20set%20sampling%20with%20concomitant%20variable&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Al-Saleh,%20Mohammad%20Fraiwan&rft.date=2007-04&rft.volume=48&rft.issue=2&rft.spage=179&rft.epage=195&rft.pages=179-195&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-006-0325-8&rft_dat=%3Cproquest_cross%3E1315595321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236992237&rft_id=info:pmid/&rfr_iscdi=true