Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable
The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximu...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2007-04, Vol.48 (2), p.179-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 48 |
creator | Al-Saleh, Mohammad Fraiwan Al-Ananbeh, Ahmad Mohammad |
description | The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00362-006-0325-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_236992237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315595321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhC0EEqXwANws7oa1TRLniKryI1XiAmfLsdc0JYmL7RZ4exIKp9FqRrOaj5BLDtccoLpJALIUDKBkIEXB1BGZ8ZJLVle1OiYzqKVgBYjylJyltAHgSimYkbhMue1NbsNAg6d5jbRHM6T_o2n3JrYmIx1C7E1Hd6kd3mgf9pPgV47YI41meEdHE2aaTL_tJu-zzWtqw2BD32YzZPpb1HR4Tk686RJe_OmcvN4vXxaPbPX88LS4WzErQWaGtlANGOdKEFjdCsE5GCUL76wXWHtusHLCWPDIx3HWGagUKs6NaJx3pZyTq0PvNoaPHaasN2EXh_GlFrKsayFkNYb4IWRjSCmi19s48ojfmoOeyOoDWT2S1RNZreQPr3tung</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236992237</pqid></control><display><type>article</type><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</creator><creatorcontrib>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</creatorcontrib><description>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-006-0325-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Estimating techniques ; Normal distribution ; Random variables ; Sample size ; Sampling techniques ; Statistics ; Studies</subject><ispartof>Statistical papers (Berlin, Germany), 2007-04, Vol.48 (2), p.179-195</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</citedby><cites>FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Al-Saleh, Mohammad Fraiwan</creatorcontrib><creatorcontrib>Al-Ananbeh, Ahmad Mohammad</creatorcontrib><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><title>Statistical papers (Berlin, Germany)</title><description>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</description><subject>Estimating techniques</subject><subject>Normal distribution</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sampling techniques</subject><subject>Statistics</subject><subject>Studies</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo1kM1OwzAQhC0EEqXwANws7oa1TRLniKryI1XiAmfLsdc0JYmL7RZ4exIKp9FqRrOaj5BLDtccoLpJALIUDKBkIEXB1BGZ8ZJLVle1OiYzqKVgBYjylJyltAHgSimYkbhMue1NbsNAg6d5jbRHM6T_o2n3JrYmIx1C7E1Hd6kd3mgf9pPgV47YI41meEdHE2aaTL_tJu-zzWtqw2BD32YzZPpb1HR4Tk686RJe_OmcvN4vXxaPbPX88LS4WzErQWaGtlANGOdKEFjdCsE5GCUL76wXWHtusHLCWPDIx3HWGagUKs6NaJx3pZyTq0PvNoaPHaasN2EXh_GlFrKsayFkNYb4IWRjSCmi19s48ojfmoOeyOoDWT2S1RNZreQPr3tung</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Al-Saleh, Mohammad Fraiwan</creator><creator>Al-Ananbeh, Ahmad Mohammad</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200704</creationdate><title>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</title><author>Al-Saleh, Mohammad Fraiwan ; Al-Ananbeh, Ahmad Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ec58b0add602e7422110a835fdcf2e9f1ae7d2ac0fe1932cda078e811a2bdfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Estimating techniques</topic><topic>Normal distribution</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sampling techniques</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Saleh, Mohammad Fraiwan</creatorcontrib><creatorcontrib>Al-Ananbeh, Ahmad Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Saleh, Mohammad Fraiwan</au><au>Al-Ananbeh, Ahmad Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2007-04</date><risdate>2007</risdate><volume>48</volume><issue>2</issue><spage>179</spage><epage>195</epage><pages>179-195</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00362-006-0325-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2007-04, Vol.48 (2), p.179-195 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_236992237 |
source | Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete |
subjects | Estimating techniques Normal distribution Random variables Sample size Sampling techniques Statistics Studies |
title | Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20means%20of%20the%20bivariate%20normal%20using%20moving%20extreme%20ranked%20set%20sampling%20with%20concomitant%20variable&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Al-Saleh,%20Mohammad%20Fraiwan&rft.date=2007-04&rft.volume=48&rft.issue=2&rft.spage=179&rft.epage=195&rft.pages=179-195&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-006-0325-8&rft_dat=%3Cproquest_cross%3E1315595321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236992237&rft_id=info:pmid/&rfr_iscdi=true |