Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination

Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2020-04, Vol.126 (4), Article 246
Hauptverfasser: Jiang, Daixun, Sun, Xun, Zhang, Hua, Wang, Kun, Shi, Liang, Du, Fanglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 126
creator Jiang, Daixun
Sun, Xun
Zhang, Hua
Wang, Kun
Shi, Liang
Du, Fanglin
description Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C 3 N 4 and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO 2 nanorods. Notably, confined polymerization of g-C 3 N 4 occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH 3 released from cyanamide decomposition yielded abundant oxygen vacancies (V O ) in TiO 2 nanorods. Compared with pristine TiO 2 nanorods, the heterostructured g-C 3 N 4 /TiO 2 nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C 3 N 4 /TiO 2 nanorods, being attributed to synergistic increasing light harvesting by V O and charges separation by heterojunctions.
doi_str_mv 10.1007/s00339-020-3430-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369918591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369918591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA59jJZpvdHKX4BaKXeg7Z7GybYpOapOpe_O1GKnhyLsPA874DDyEXHK44QDNNAEIoBhUwUQtg4wGZ8FpUDKSAQzIBVTesFUoek5OU1lCmrqoJ-XoyPuRdh9QGPziPG_SZOd_vLPZ0yebiqZ4u3HNFfQFj6BP9cHlFo7MrGj7HJXr6bqzx1mGiQ4gU_apcJbxdhRysyeZ1zM7SD5Mx0h7Ln2w2zpvsgj8jR4N5TXj-u0_Jy-3NYn7PHp_vHubXj8wKLjNDpaCrhTRDxxVy27VGdQNYDkpKUStEqbAT7dD0lbBCwmw2a9oC2sbIvmvFKbnc925jeNthynoddtGXl7oSUinezhQvFN9TNoaUIg56G93GxFFz0D-a9V6zLpr1j2Y9lky1z6TC-iXGv-b_Q98oToKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369918591</pqid></control><display><type>article</type><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</creator><creatorcontrib>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</creatorcontrib><description>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C 3 N 4 and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO 2 nanorods. Notably, confined polymerization of g-C 3 N 4 occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH 3 released from cyanamide decomposition yielded abundant oxygen vacancies (V O ) in TiO 2 nanorods. Compared with pristine TiO 2 nanorods, the heterostructured g-C 3 N 4 /TiO 2 nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C 3 N 4 /TiO 2 nanorods, being attributed to synergistic increasing light harvesting by V O and charges separation by heterojunctions.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-3430-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ammonia ; Applied physics ; Carbon nitride ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Decontamination ; Dehydration ; Heterojunctions ; Heterostructures ; Machines ; Manufacturing ; Materials science ; Nanorods ; Nanotechnology ; Nanotubes ; Optical and Electronic Materials ; Orange II ; Photocatalysis ; Physics ; Physics and Astronomy ; Polymerization ; Prepolymers ; Processes ; Separation ; Surfaces and Interfaces ; Thin Films ; Titanium dioxide ; Vacancies ; Water purification</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2020-04, Vol.126 (4), Article 246</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</citedby><cites>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</cites><orcidid>0000-0002-9005-3848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-3430-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-3430-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Daixun</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Du, Fanglin</creatorcontrib><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C 3 N 4 and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO 2 nanorods. Notably, confined polymerization of g-C 3 N 4 occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH 3 released from cyanamide decomposition yielded abundant oxygen vacancies (V O ) in TiO 2 nanorods. Compared with pristine TiO 2 nanorods, the heterostructured g-C 3 N 4 /TiO 2 nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C 3 N 4 /TiO 2 nanorods, being attributed to synergistic increasing light harvesting by V O and charges separation by heterojunctions.</description><subject>Ammonia</subject><subject>Applied physics</subject><subject>Carbon nitride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Decontamination</subject><subject>Dehydration</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical and Electronic Materials</subject><subject>Orange II</subject><subject>Photocatalysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymerization</subject><subject>Prepolymers</subject><subject>Processes</subject><subject>Separation</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium dioxide</subject><subject>Vacancies</subject><subject>Water purification</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeA59jJZpvdHKX4BaKXeg7Z7GybYpOapOpe_O1GKnhyLsPA874DDyEXHK44QDNNAEIoBhUwUQtg4wGZ8FpUDKSAQzIBVTesFUoek5OU1lCmrqoJ-XoyPuRdh9QGPziPG_SZOd_vLPZ0yebiqZ4u3HNFfQFj6BP9cHlFo7MrGj7HJXr6bqzx1mGiQ4gU_apcJbxdhRysyeZ1zM7SD5Mx0h7Ln2w2zpvsgj8jR4N5TXj-u0_Jy-3NYn7PHp_vHubXj8wKLjNDpaCrhTRDxxVy27VGdQNYDkpKUStEqbAT7dD0lbBCwmw2a9oC2sbIvmvFKbnc925jeNthynoddtGXl7oSUinezhQvFN9TNoaUIg56G93GxFFz0D-a9V6zLpr1j2Y9lky1z6TC-iXGv-b_Q98oToKZ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jiang, Daixun</creator><creator>Sun, Xun</creator><creator>Zhang, Hua</creator><creator>Wang, Kun</creator><creator>Shi, Liang</creator><creator>Du, Fanglin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9005-3848</orcidid></search><sort><creationdate>20200401</creationdate><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><author>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Applied physics</topic><topic>Carbon nitride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Decontamination</topic><topic>Dehydration</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical and Electronic Materials</topic><topic>Orange II</topic><topic>Photocatalysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymerization</topic><topic>Prepolymers</topic><topic>Processes</topic><topic>Separation</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium dioxide</topic><topic>Vacancies</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Daixun</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Du, Fanglin</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Daixun</au><au>Sun, Xun</au><au>Zhang, Hua</au><au>Wang, Kun</au><au>Shi, Liang</au><au>Du, Fanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>126</volume><issue>4</issue><artnum>246</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C 3 N 4 and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO 2 nanorods. Notably, confined polymerization of g-C 3 N 4 occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH 3 released from cyanamide decomposition yielded abundant oxygen vacancies (V O ) in TiO 2 nanorods. Compared with pristine TiO 2 nanorods, the heterostructured g-C 3 N 4 /TiO 2 nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C 3 N 4 /TiO 2 nanorods, being attributed to synergistic increasing light harvesting by V O and charges separation by heterojunctions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-3430-y</doi><orcidid>https://orcid.org/0000-0002-9005-3848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 246
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2369918591
source SpringerLink Journals - AutoHoldings
subjects Ammonia
Applied physics
Carbon nitride
Characterization and Evaluation of Materials
Condensed Matter Physics
Decontamination
Dehydration
Heterojunctions
Heterostructures
Machines
Manufacturing
Materials science
Nanorods
Nanotechnology
Nanotubes
Optical and Electronic Materials
Orange II
Photocatalysis
Physics
Physics and Astronomy
Polymerization
Prepolymers
Processes
Separation
Surfaces and Interfaces
Thin Films
Titanium dioxide
Vacancies
Water purification
title Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotube%20confinement-induced%20g-C3N4/TiO2%20nanorods%20with%20rich%20oxygen%20vacancies%20for%20enhanced%20photocatalytic%20water%20decontamination&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Jiang,%20Daixun&rft.date=2020-04-01&rft.volume=126&rft.issue=4&rft.artnum=246&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-3430-y&rft_dat=%3Cproquest_cross%3E2369918591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369918591&rft_id=info:pmid/&rfr_iscdi=true