Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination
Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C 3 N 4 /TiO 2 heterostructures were prepared via a facile thermal procedure, with TiO 2 nanorods as matrix and g-C 3 N 4 as visibl...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2020-04, Vol.126 (4), Article 246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 126 |
creator | Jiang, Daixun Sun, Xun Zhang, Hua Wang, Kun Shi, Liang Du, Fanglin |
description | Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C
3
N
4
/TiO
2
heterostructures were prepared via a facile thermal procedure, with TiO
2
nanorods as matrix and g-C
3
N
4
as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C
3
N
4
and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO
2
nanorods. Notably, confined polymerization of g-C
3
N
4
occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH
3
released from cyanamide decomposition yielded abundant oxygen vacancies (V
O
) in TiO
2
nanorods. Compared with pristine TiO
2
nanorods, the heterostructured g-C
3
N
4
/TiO
2
nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C
3
N
4
/TiO
2
nanorods, being attributed to synergistic increasing light harvesting by V
O
and charges separation by heterojunctions. |
doi_str_mv | 10.1007/s00339-020-3430-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369918591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369918591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA59jJZpvdHKX4BaKXeg7Z7GybYpOapOpe_O1GKnhyLsPA874DDyEXHK44QDNNAEIoBhUwUQtg4wGZ8FpUDKSAQzIBVTesFUoek5OU1lCmrqoJ-XoyPuRdh9QGPziPG_SZOd_vLPZ0yebiqZ4u3HNFfQFj6BP9cHlFo7MrGj7HJXr6bqzx1mGiQ4gU_apcJbxdhRysyeZ1zM7SD5Mx0h7Ln2w2zpvsgj8jR4N5TXj-u0_Jy-3NYn7PHp_vHubXj8wKLjNDpaCrhTRDxxVy27VGdQNYDkpKUStEqbAT7dD0lbBCwmw2a9oC2sbIvmvFKbnc925jeNthynoddtGXl7oSUinezhQvFN9TNoaUIg56G93GxFFz0D-a9V6zLpr1j2Y9lky1z6TC-iXGv-b_Q98oToKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369918591</pqid></control><display><type>article</type><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</creator><creatorcontrib>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</creatorcontrib><description>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C
3
N
4
/TiO
2
heterostructures were prepared via a facile thermal procedure, with TiO
2
nanorods as matrix and g-C
3
N
4
as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C
3
N
4
and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO
2
nanorods. Notably, confined polymerization of g-C
3
N
4
occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH
3
released from cyanamide decomposition yielded abundant oxygen vacancies (V
O
) in TiO
2
nanorods. Compared with pristine TiO
2
nanorods, the heterostructured g-C
3
N
4
/TiO
2
nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C
3
N
4
/TiO
2
nanorods, being attributed to synergistic increasing light harvesting by V
O
and charges separation by heterojunctions.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-3430-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ammonia ; Applied physics ; Carbon nitride ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Decontamination ; Dehydration ; Heterojunctions ; Heterostructures ; Machines ; Manufacturing ; Materials science ; Nanorods ; Nanotechnology ; Nanotubes ; Optical and Electronic Materials ; Orange II ; Photocatalysis ; Physics ; Physics and Astronomy ; Polymerization ; Prepolymers ; Processes ; Separation ; Surfaces and Interfaces ; Thin Films ; Titanium dioxide ; Vacancies ; Water purification</subject><ispartof>Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 246</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</citedby><cites>FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</cites><orcidid>0000-0002-9005-3848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-3430-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-3430-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Daixun</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Du, Fanglin</creatorcontrib><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C
3
N
4
/TiO
2
heterostructures were prepared via a facile thermal procedure, with TiO
2
nanorods as matrix and g-C
3
N
4
as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C
3
N
4
and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO
2
nanorods. Notably, confined polymerization of g-C
3
N
4
occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH
3
released from cyanamide decomposition yielded abundant oxygen vacancies (V
O
) in TiO
2
nanorods. Compared with pristine TiO
2
nanorods, the heterostructured g-C
3
N
4
/TiO
2
nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C
3
N
4
/TiO
2
nanorods, being attributed to synergistic increasing light harvesting by V
O
and charges separation by heterojunctions.</description><subject>Ammonia</subject><subject>Applied physics</subject><subject>Carbon nitride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Decontamination</subject><subject>Dehydration</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical and Electronic Materials</subject><subject>Orange II</subject><subject>Photocatalysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymerization</subject><subject>Prepolymers</subject><subject>Processes</subject><subject>Separation</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium dioxide</subject><subject>Vacancies</subject><subject>Water purification</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeA59jJZpvdHKX4BaKXeg7Z7GybYpOapOpe_O1GKnhyLsPA874DDyEXHK44QDNNAEIoBhUwUQtg4wGZ8FpUDKSAQzIBVTesFUoek5OU1lCmrqoJ-XoyPuRdh9QGPziPG_SZOd_vLPZ0yebiqZ4u3HNFfQFj6BP9cHlFo7MrGj7HJXr6bqzx1mGiQ4gU_apcJbxdhRysyeZ1zM7SD5Mx0h7Ln2w2zpvsgj8jR4N5TXj-u0_Jy-3NYn7PHp_vHubXj8wKLjNDpaCrhTRDxxVy27VGdQNYDkpKUStEqbAT7dD0lbBCwmw2a9oC2sbIvmvFKbnc925jeNthynoddtGXl7oSUinezhQvFN9TNoaUIg56G93GxFFz0D-a9V6zLpr1j2Y9lky1z6TC-iXGv-b_Q98oToKZ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jiang, Daixun</creator><creator>Sun, Xun</creator><creator>Zhang, Hua</creator><creator>Wang, Kun</creator><creator>Shi, Liang</creator><creator>Du, Fanglin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9005-3848</orcidid></search><sort><creationdate>20200401</creationdate><title>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</title><author>Jiang, Daixun ; Sun, Xun ; Zhang, Hua ; Wang, Kun ; Shi, Liang ; Du, Fanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e990b436afb19e1cb8a9bf0c10966349ee69eb38f7d23c36055578e1cc7a6db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Applied physics</topic><topic>Carbon nitride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Decontamination</topic><topic>Dehydration</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical and Electronic Materials</topic><topic>Orange II</topic><topic>Photocatalysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymerization</topic><topic>Prepolymers</topic><topic>Processes</topic><topic>Separation</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium dioxide</topic><topic>Vacancies</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Daixun</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Du, Fanglin</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Daixun</au><au>Sun, Xun</au><au>Zhang, Hua</au><au>Wang, Kun</au><au>Shi, Liang</au><au>Du, Fanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>126</volume><issue>4</issue><artnum>246</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C
3
N
4
/TiO
2
heterostructures were prepared via a facile thermal procedure, with TiO
2
nanorods as matrix and g-C
3
N
4
as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C
3
N
4
and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO
2
nanorods. Notably, confined polymerization of g-C
3
N
4
occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH
3
released from cyanamide decomposition yielded abundant oxygen vacancies (V
O
) in TiO
2
nanorods. Compared with pristine TiO
2
nanorods, the heterostructured g-C
3
N
4
/TiO
2
nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C
3
N
4
/TiO
2
nanorods, being attributed to synergistic increasing light harvesting by V
O
and charges separation by heterojunctions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-3430-y</doi><orcidid>https://orcid.org/0000-0002-9005-3848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 246 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2369918591 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonia Applied physics Carbon nitride Characterization and Evaluation of Materials Condensed Matter Physics Decontamination Dehydration Heterojunctions Heterostructures Machines Manufacturing Materials science Nanorods Nanotechnology Nanotubes Optical and Electronic Materials Orange II Photocatalysis Physics Physics and Astronomy Polymerization Prepolymers Processes Separation Surfaces and Interfaces Thin Films Titanium dioxide Vacancies Water purification |
title | Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotube%20confinement-induced%20g-C3N4/TiO2%20nanorods%20with%20rich%20oxygen%20vacancies%20for%20enhanced%20photocatalytic%20water%20decontamination&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Jiang,%20Daixun&rft.date=2020-04-01&rft.volume=126&rft.issue=4&rft.artnum=246&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-3430-y&rft_dat=%3Cproquest_cross%3E2369918591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369918591&rft_id=info:pmid/&rfr_iscdi=true |