Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation

We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic commerce research and applications 2010, Vol.9 (1), p.73-83
Hauptverfasser: Kim, Heung-Nam, Ji, Ae-Ttie, Ha, Inay, Jo, Geun-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 73
container_title Electronic commerce research and applications
container_volume 9
creator Kim, Heung-Nam
Ji, Ae-Ttie
Ha, Inay
Jo, Geun-Sik
description We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from del. icio. us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.
doi_str_mv 10.1016/j.elerap.2009.08.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_236989733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567422309000544</els_id><sourcerecordid>1944454311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIfcIi4J6xjx3EuSKjiJVXiAmfLsTetozRuHbdS_x5H4cKF0-5qZ2Z3JknuCeQECH_scuzRq31eANQ5iByAXSQLIiqaVYLxy9iXvMpYUdDr5GYcO4ACaigXSbNyfa8a51WwJ0xb2wf0dtikjRrRpG5I9R9AUJvNtG6dT3HYqkFPU9hiejiq3oZz6trUo3a7HQ4mctxwm1y1qh_x7rcuk-_Xl6_Ve7b-fPtYPa8zTTkLmVJa1Y0WhDFNTPwdBBdGM8KrsoJSlIRoRRk2FFilmS5pQ0ujORJoDFaULpOHWXfv3eGIY5CdO_ohnpQF5bWoIyaC2AzS3o2jx1buvd0pf5YE5BSm7OQcppzClCBkDDPSnmYaRgMni16O2uKg0dhoNkjj7P8CP7V-gMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236989733</pqid></control><display><type>article</type><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</creator><creatorcontrib>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</creatorcontrib><description>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from del. icio. us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</description><identifier>ISSN: 1567-4223</identifier><identifier>EISSN: 1873-7846</identifier><identifier>DOI: 10.1016/j.elerap.2009.08.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Collaboration ; Collaborative filtering ; Collaborative tagging ; Electronic commerce ; Recommender system ; Studies</subject><ispartof>Electronic commerce research and applications, 2010, Vol.9 (1), p.73-83</ispartof><rights>2009 Elsevier B.V.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</citedby><cites>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567422309000544$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kim, Heung-Nam</creatorcontrib><creatorcontrib>Ji, Ae-Ttie</creatorcontrib><creatorcontrib>Ha, Inay</creatorcontrib><creatorcontrib>Jo, Geun-Sik</creatorcontrib><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><title>Electronic commerce research and applications</title><description>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from del. icio. us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Collaborative tagging</subject><subject>Electronic commerce</subject><subject>Recommender system</subject><subject>Studies</subject><issn>1567-4223</issn><issn>1873-7846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIlMIfcIi4J6xjx3EuSKjiJVXiAmfLsTetozRuHbdS_x5H4cKF0-5qZ2Z3JknuCeQECH_scuzRq31eANQ5iByAXSQLIiqaVYLxy9iXvMpYUdDr5GYcO4ACaigXSbNyfa8a51WwJ0xb2wf0dtikjRrRpG5I9R9AUJvNtG6dT3HYqkFPU9hiejiq3oZz6trUo3a7HQ4mctxwm1y1qh_x7rcuk-_Xl6_Ve7b-fPtYPa8zTTkLmVJa1Y0WhDFNTPwdBBdGM8KrsoJSlIRoRRk2FFilmS5pQ0ujORJoDFaULpOHWXfv3eGIY5CdO_ohnpQF5bWoIyaC2AzS3o2jx1buvd0pf5YE5BSm7OQcppzClCBkDDPSnmYaRgMni16O2uKg0dhoNkjj7P8CP7V-gMM</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kim, Heung-Nam</creator><creator>Ji, Ae-Ttie</creator><creator>Ha, Inay</creator><creator>Jo, Geun-Sik</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2010</creationdate><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><author>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Collaborative tagging</topic><topic>Electronic commerce</topic><topic>Recommender system</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heung-Nam</creatorcontrib><creatorcontrib>Ji, Ae-Ttie</creatorcontrib><creatorcontrib>Ha, Inay</creatorcontrib><creatorcontrib>Jo, Geun-Sik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Electronic commerce research and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heung-Nam</au><au>Ji, Ae-Ttie</au><au>Ha, Inay</au><au>Jo, Geun-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</atitle><jtitle>Electronic commerce research and applications</jtitle><date>2010</date><risdate>2010</risdate><volume>9</volume><issue>1</issue><spage>73</spage><epage>83</epage><pages>73-83</pages><issn>1567-4223</issn><eissn>1873-7846</eissn><abstract>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from del. icio. us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.elerap.2009.08.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-4223
ispartof Electronic commerce research and applications, 2010, Vol.9 (1), p.73-83
issn 1567-4223
1873-7846
language eng
recordid cdi_proquest_journals_236989733
source Elsevier ScienceDirect Journals
subjects Algorithms
Collaboration
Collaborative filtering
Collaborative tagging
Electronic commerce
Recommender system
Studies
title Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20filtering%20based%20on%20collaborative%20tagging%20for%20enhancing%20the%20quality%20of%20recommendation&rft.jtitle=Electronic%20commerce%20research%20and%20applications&rft.au=Kim,%20Heung-Nam&rft.date=2010&rft.volume=9&rft.issue=1&rft.spage=73&rft.epage=83&rft.pages=73-83&rft.issn=1567-4223&rft.eissn=1873-7846&rft_id=info:doi/10.1016/j.elerap.2009.08.004&rft_dat=%3Cproquest_cross%3E1944454311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236989733&rft_id=info:pmid/&rft_els_id=S1567422309000544&rfr_iscdi=true