Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation
We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging fo...
Gespeichert in:
Veröffentlicht in: | Electronic commerce research and applications 2010, Vol.9 (1), p.73-83 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Electronic commerce research and applications |
container_volume | 9 |
creator | Kim, Heung-Nam Ji, Ae-Ttie Ha, Inay Jo, Geun-Sik |
description | We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from
del.
icio.
us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work. |
doi_str_mv | 10.1016/j.elerap.2009.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_236989733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567422309000544</els_id><sourcerecordid>1944454311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIfcIi4J6xjx3EuSKjiJVXiAmfLsTetozRuHbdS_x5H4cKF0-5qZ2Z3JknuCeQECH_scuzRq31eANQ5iByAXSQLIiqaVYLxy9iXvMpYUdDr5GYcO4ACaigXSbNyfa8a51WwJ0xb2wf0dtikjRrRpG5I9R9AUJvNtG6dT3HYqkFPU9hiejiq3oZz6trUo3a7HQ4mctxwm1y1qh_x7rcuk-_Xl6_Ve7b-fPtYPa8zTTkLmVJa1Y0WhDFNTPwdBBdGM8KrsoJSlIRoRRk2FFilmS5pQ0ujORJoDFaULpOHWXfv3eGIY5CdO_ohnpQF5bWoIyaC2AzS3o2jx1buvd0pf5YE5BSm7OQcppzClCBkDDPSnmYaRgMni16O2uKg0dhoNkjj7P8CP7V-gMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236989733</pqid></control><display><type>article</type><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</creator><creatorcontrib>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</creatorcontrib><description>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from
del.
icio.
us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</description><identifier>ISSN: 1567-4223</identifier><identifier>EISSN: 1873-7846</identifier><identifier>DOI: 10.1016/j.elerap.2009.08.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Collaboration ; Collaborative filtering ; Collaborative tagging ; Electronic commerce ; Recommender system ; Studies</subject><ispartof>Electronic commerce research and applications, 2010, Vol.9 (1), p.73-83</ispartof><rights>2009 Elsevier B.V.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</citedby><cites>FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567422309000544$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kim, Heung-Nam</creatorcontrib><creatorcontrib>Ji, Ae-Ttie</creatorcontrib><creatorcontrib>Ha, Inay</creatorcontrib><creatorcontrib>Jo, Geun-Sik</creatorcontrib><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><title>Electronic commerce research and applications</title><description>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from
del.
icio.
us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Collaborative tagging</subject><subject>Electronic commerce</subject><subject>Recommender system</subject><subject>Studies</subject><issn>1567-4223</issn><issn>1873-7846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIlMIfcIi4J6xjx3EuSKjiJVXiAmfLsTetozRuHbdS_x5H4cKF0-5qZ2Z3JknuCeQECH_scuzRq31eANQ5iByAXSQLIiqaVYLxy9iXvMpYUdDr5GYcO4ACaigXSbNyfa8a51WwJ0xb2wf0dtikjRrRpG5I9R9AUJvNtG6dT3HYqkFPU9hiejiq3oZz6trUo3a7HQ4mctxwm1y1qh_x7rcuk-_Xl6_Ve7b-fPtYPa8zTTkLmVJa1Y0WhDFNTPwdBBdGM8KrsoJSlIRoRRk2FFilmS5pQ0ujORJoDFaULpOHWXfv3eGIY5CdO_ohnpQF5bWoIyaC2AzS3o2jx1buvd0pf5YE5BSm7OQcppzClCBkDDPSnmYaRgMni16O2uKg0dhoNkjj7P8CP7V-gMM</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kim, Heung-Nam</creator><creator>Ji, Ae-Ttie</creator><creator>Ha, Inay</creator><creator>Jo, Geun-Sik</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>2010</creationdate><title>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</title><author>Kim, Heung-Nam ; Ji, Ae-Ttie ; Ha, Inay ; Jo, Geun-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-aaca9bc8144c1d1870868dc416757058511ca34eb3047c4c53b35dc6e10bde733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Collaborative tagging</topic><topic>Electronic commerce</topic><topic>Recommender system</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heung-Nam</creatorcontrib><creatorcontrib>Ji, Ae-Ttie</creatorcontrib><creatorcontrib>Ha, Inay</creatorcontrib><creatorcontrib>Jo, Geun-Sik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Electronic commerce research and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heung-Nam</au><au>Ji, Ae-Ttie</au><au>Ha, Inay</au><au>Jo, Geun-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation</atitle><jtitle>Electronic commerce research and applications</jtitle><date>2010</date><risdate>2010</risdate><volume>9</volume><issue>1</issue><spage>73</spage><epage>83</epage><pages>73-83</pages><issn>1567-4223</issn><eissn>1873-7846</eissn><abstract>We propose a collaborative filtering method to provide an enhanced recommendation quality derived from user-created tags. Collaborative tagging is employed as an approach in order to grasp and filter users’ preferences for items. In addition, we explore several advantages of collaborative tagging for data sparseness and a cold-start user. These applications are notable challenges in collaborative filtering. We present empirical experiments using a real dataset from
del.
icio.
us. Experimental results show that the proposed algorithm offers significant advantages both in terms of improving the recommendation quality for sparse data and in dealing with cold-start users as compared to existing work.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.elerap.2009.08.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-4223 |
ispartof | Electronic commerce research and applications, 2010, Vol.9 (1), p.73-83 |
issn | 1567-4223 1873-7846 |
language | eng |
recordid | cdi_proquest_journals_236989733 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Collaboration Collaborative filtering Collaborative tagging Electronic commerce Recommender system Studies |
title | Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20filtering%20based%20on%20collaborative%20tagging%20for%20enhancing%20the%20quality%20of%20recommendation&rft.jtitle=Electronic%20commerce%20research%20and%20applications&rft.au=Kim,%20Heung-Nam&rft.date=2010&rft.volume=9&rft.issue=1&rft.spage=73&rft.epage=83&rft.pages=73-83&rft.issn=1567-4223&rft.eissn=1873-7846&rft_id=info:doi/10.1016/j.elerap.2009.08.004&rft_dat=%3Cproquest_cross%3E1944454311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236989733&rft_id=info:pmid/&rft_els_id=S1567422309000544&rfr_iscdi=true |