Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints
Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature a...
Gespeichert in:
Veröffentlicht in: | International journal of adhesion and adhesives 2020-03, Vol.97, p.102477, Article 102477 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102477 |
container_title | International journal of adhesion and adhesives |
container_volume | 97 |
creator | Sales, R.C.M. de Sousa, A.F. Brito, C.B.G. Sena, J.L.S. Silveira, N.N.A. Cândido, G.M. Donadon, M.V. |
description | Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process. |
doi_str_mv | 10.1016/j.ijadhadh.2019.102477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369804991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014374961930226X</els_id><sourcerecordid>2369804991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQQI-dyZNkzZvjuGfwcAXfQ5pcrultM1MOnHf3szqs3DhwuGcA-eH0C0lC0qouG8XrtV2l26REyqTmBdleYZmtCplRmhenqMZoQXLykKKS3QVY0sILUnBZsgvB90do4vYN3h33AY_7iD0usPQNGDGpA-4d19gce8t4PX9eo3dMELodO8GHXATtBkPAfDoD9vdAPGnyuhQp6Tx_d5HN0LErU-xeI0uGt1FuPn9c_T-9Pi2esk2r8_r1XKTGVaQMcsLWpPKslpWnILkNeekFqUh3Ba6tlKUQI01ljPLjaAVt1zwupJQMSqY5myO7qbeffAfB4ijav0hpK1R5UzIihRS0uQSk8sEH2OARu2D63U4KkrUCa5q1R9cdYKrJrgp-DAFIW34dBBUNA4GA9aFRE1Z7_6r-AaP3Ycv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369804991</pqid></control><display><type>article</type><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</creator><creatorcontrib>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</creatorcontrib><description>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</description><identifier>ISSN: 0143-7496</identifier><identifier>EISSN: 1879-0127</identifier><identifier>DOI: 10.1016/j.ijadhadh.2019.102477</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adhesive joints ; Bonded joints ; Carbon-epoxy composites ; Delamination ; Environmental effects ; Environmental issues ; Epoxides ; Fasteners ; Fractography ; Fracture toughness ; High temperature ; Mechanical properties ; Moisture absorption ; Moisture content ; Resin –based composites ; Room temperature ; Stress concentration ; Stress distribution</subject><ispartof>International journal of adhesion and adhesives, 2020-03, Vol.97, p.102477, Article 102477</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</citedby><cites>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijadhadh.2019.102477$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sales, R.C.M.</creatorcontrib><creatorcontrib>de Sousa, A.F.</creatorcontrib><creatorcontrib>Brito, C.B.G.</creatorcontrib><creatorcontrib>Sena, J.L.S.</creatorcontrib><creatorcontrib>Silveira, N.N.A.</creatorcontrib><creatorcontrib>Cândido, G.M.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><title>International journal of adhesion and adhesives</title><description>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</description><subject>Adhesive joints</subject><subject>Bonded joints</subject><subject>Carbon-epoxy composites</subject><subject>Delamination</subject><subject>Environmental effects</subject><subject>Environmental issues</subject><subject>Epoxides</subject><subject>Fasteners</subject><subject>Fractography</subject><subject>Fracture toughness</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Moisture absorption</subject><subject>Moisture content</subject><subject>Resin –based composites</subject><subject>Room temperature</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><issn>0143-7496</issn><issn>1879-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQQI-dyZNkzZvjuGfwcAXfQ5pcrultM1MOnHf3szqs3DhwuGcA-eH0C0lC0qouG8XrtV2l26REyqTmBdleYZmtCplRmhenqMZoQXLykKKS3QVY0sILUnBZsgvB90do4vYN3h33AY_7iD0usPQNGDGpA-4d19gce8t4PX9eo3dMELodO8GHXATtBkPAfDoD9vdAPGnyuhQp6Tx_d5HN0LErU-xeI0uGt1FuPn9c_T-9Pi2esk2r8_r1XKTGVaQMcsLWpPKslpWnILkNeekFqUh3Ba6tlKUQI01ljPLjaAVt1zwupJQMSqY5myO7qbeffAfB4ijav0hpK1R5UzIihRS0uQSk8sEH2OARu2D63U4KkrUCa5q1R9cdYKrJrgp-DAFIW34dBBUNA4GA9aFRE1Z7_6r-AaP3Ycv</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Sales, R.C.M.</creator><creator>de Sousa, A.F.</creator><creator>Brito, C.B.G.</creator><creator>Sena, J.L.S.</creator><creator>Silveira, N.N.A.</creator><creator>Cândido, G.M.</creator><creator>Donadon, M.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202003</creationdate><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><author>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesive joints</topic><topic>Bonded joints</topic><topic>Carbon-epoxy composites</topic><topic>Delamination</topic><topic>Environmental effects</topic><topic>Environmental issues</topic><topic>Epoxides</topic><topic>Fasteners</topic><topic>Fractography</topic><topic>Fracture toughness</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Moisture absorption</topic><topic>Moisture content</topic><topic>Resin –based composites</topic><topic>Room temperature</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sales, R.C.M.</creatorcontrib><creatorcontrib>de Sousa, A.F.</creatorcontrib><creatorcontrib>Brito, C.B.G.</creatorcontrib><creatorcontrib>Sena, J.L.S.</creatorcontrib><creatorcontrib>Silveira, N.N.A.</creatorcontrib><creatorcontrib>Cândido, G.M.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of adhesion and adhesives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sales, R.C.M.</au><au>de Sousa, A.F.</au><au>Brito, C.B.G.</au><au>Sena, J.L.S.</au><au>Silveira, N.N.A.</au><au>Cândido, G.M.</au><au>Donadon, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</atitle><jtitle>International journal of adhesion and adhesives</jtitle><date>2020-03</date><risdate>2020</risdate><volume>97</volume><spage>102477</spage><pages>102477-</pages><artnum>102477</artnum><issn>0143-7496</issn><eissn>1879-0127</eissn><abstract>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijadhadh.2019.102477</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-7496 |
ispartof | International journal of adhesion and adhesives, 2020-03, Vol.97, p.102477, Article 102477 |
issn | 0143-7496 1879-0127 |
language | eng |
recordid | cdi_proquest_journals_2369804991 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adhesive joints Bonded joints Carbon-epoxy composites Delamination Environmental effects Environmental issues Epoxides Fasteners Fractography Fracture toughness High temperature Mechanical properties Moisture absorption Moisture content Resin –based composites Room temperature Stress concentration Stress distribution |
title | Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hygrothermal%20effects%20on%20mixed%20mode%20I/II%20interlaminar%20fracture%20toughness%20of%20carbon%20composites%20joints&rft.jtitle=International%20journal%20of%20adhesion%20and%20adhesives&rft.au=Sales,%20R.C.M.&rft.date=2020-03&rft.volume=97&rft.spage=102477&rft.pages=102477-&rft.artnum=102477&rft.issn=0143-7496&rft.eissn=1879-0127&rft_id=info:doi/10.1016/j.ijadhadh.2019.102477&rft_dat=%3Cproquest_cross%3E2369804991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369804991&rft_id=info:pmid/&rft_els_id=S014374961930226X&rfr_iscdi=true |