Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints

Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adhesion and adhesives 2020-03, Vol.97, p.102477, Article 102477
Hauptverfasser: Sales, R.C.M., de Sousa, A.F., Brito, C.B.G., Sena, J.L.S., Silveira, N.N.A., Cândido, G.M., Donadon, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102477
container_title International journal of adhesion and adhesives
container_volume 97
creator Sales, R.C.M.
de Sousa, A.F.
Brito, C.B.G.
Sena, J.L.S.
Silveira, N.N.A.
Cândido, G.M.
Donadon, M.V.
description Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.
doi_str_mv 10.1016/j.ijadhadh.2019.102477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369804991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014374961930226X</els_id><sourcerecordid>2369804991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQQI-dyZNkzZvjuGfwcAXfQ5pcrultM1MOnHf3szqs3DhwuGcA-eH0C0lC0qouG8XrtV2l26REyqTmBdleYZmtCplRmhenqMZoQXLykKKS3QVY0sILUnBZsgvB90do4vYN3h33AY_7iD0usPQNGDGpA-4d19gce8t4PX9eo3dMELodO8GHXATtBkPAfDoD9vdAPGnyuhQp6Tx_d5HN0LErU-xeI0uGt1FuPn9c_T-9Pi2esk2r8_r1XKTGVaQMcsLWpPKslpWnILkNeekFqUh3Ba6tlKUQI01ljPLjaAVt1zwupJQMSqY5myO7qbeffAfB4ijav0hpK1R5UzIihRS0uQSk8sEH2OARu2D63U4KkrUCa5q1R9cdYKrJrgp-DAFIW34dBBUNA4GA9aFRE1Z7_6r-AaP3Ycv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369804991</pqid></control><display><type>article</type><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</creator><creatorcontrib>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</creatorcontrib><description>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</description><identifier>ISSN: 0143-7496</identifier><identifier>EISSN: 1879-0127</identifier><identifier>DOI: 10.1016/j.ijadhadh.2019.102477</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adhesive joints ; Bonded joints ; Carbon-epoxy composites ; Delamination ; Environmental effects ; Environmental issues ; Epoxides ; Fasteners ; Fractography ; Fracture toughness ; High temperature ; Mechanical properties ; Moisture absorption ; Moisture content ; Resin –based composites ; Room temperature ; Stress concentration ; Stress distribution</subject><ispartof>International journal of adhesion and adhesives, 2020-03, Vol.97, p.102477, Article 102477</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</citedby><cites>FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijadhadh.2019.102477$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sales, R.C.M.</creatorcontrib><creatorcontrib>de Sousa, A.F.</creatorcontrib><creatorcontrib>Brito, C.B.G.</creatorcontrib><creatorcontrib>Sena, J.L.S.</creatorcontrib><creatorcontrib>Silveira, N.N.A.</creatorcontrib><creatorcontrib>Cândido, G.M.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><title>International journal of adhesion and adhesives</title><description>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</description><subject>Adhesive joints</subject><subject>Bonded joints</subject><subject>Carbon-epoxy composites</subject><subject>Delamination</subject><subject>Environmental effects</subject><subject>Environmental issues</subject><subject>Epoxides</subject><subject>Fasteners</subject><subject>Fractography</subject><subject>Fracture toughness</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Moisture absorption</subject><subject>Moisture content</subject><subject>Resin –based composites</subject><subject>Room temperature</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><issn>0143-7496</issn><issn>1879-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQQI-dyZNkzZvjuGfwcAXfQ5pcrultM1MOnHf3szqs3DhwuGcA-eH0C0lC0qouG8XrtV2l26REyqTmBdleYZmtCplRmhenqMZoQXLykKKS3QVY0sILUnBZsgvB90do4vYN3h33AY_7iD0usPQNGDGpA-4d19gce8t4PX9eo3dMELodO8GHXATtBkPAfDoD9vdAPGnyuhQp6Tx_d5HN0LErU-xeI0uGt1FuPn9c_T-9Pi2esk2r8_r1XKTGVaQMcsLWpPKslpWnILkNeekFqUh3Ba6tlKUQI01ljPLjaAVt1zwupJQMSqY5myO7qbeffAfB4ijav0hpK1R5UzIihRS0uQSk8sEH2OARu2D63U4KkrUCa5q1R9cdYKrJrgp-DAFIW34dBBUNA4GA9aFRE1Z7_6r-AaP3Ycv</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Sales, R.C.M.</creator><creator>de Sousa, A.F.</creator><creator>Brito, C.B.G.</creator><creator>Sena, J.L.S.</creator><creator>Silveira, N.N.A.</creator><creator>Cândido, G.M.</creator><creator>Donadon, M.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202003</creationdate><title>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</title><author>Sales, R.C.M. ; de Sousa, A.F. ; Brito, C.B.G. ; Sena, J.L.S. ; Silveira, N.N.A. ; Cândido, G.M. ; Donadon, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-241b08d3b9851e95b550b67c05d4abd967e1cdcd53d5c6185d565b89e83163a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesive joints</topic><topic>Bonded joints</topic><topic>Carbon-epoxy composites</topic><topic>Delamination</topic><topic>Environmental effects</topic><topic>Environmental issues</topic><topic>Epoxides</topic><topic>Fasteners</topic><topic>Fractography</topic><topic>Fracture toughness</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Moisture absorption</topic><topic>Moisture content</topic><topic>Resin –based composites</topic><topic>Room temperature</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sales, R.C.M.</creatorcontrib><creatorcontrib>de Sousa, A.F.</creatorcontrib><creatorcontrib>Brito, C.B.G.</creatorcontrib><creatorcontrib>Sena, J.L.S.</creatorcontrib><creatorcontrib>Silveira, N.N.A.</creatorcontrib><creatorcontrib>Cândido, G.M.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of adhesion and adhesives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sales, R.C.M.</au><au>de Sousa, A.F.</au><au>Brito, C.B.G.</au><au>Sena, J.L.S.</au><au>Silveira, N.N.A.</au><au>Cândido, G.M.</au><au>Donadon, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints</atitle><jtitle>International journal of adhesion and adhesives</jtitle><date>2020-03</date><risdate>2020</risdate><volume>97</volume><spage>102477</spage><pages>102477-</pages><artnum>102477</artnum><issn>0143-7496</issn><eissn>1879-0127</eissn><abstract>Adhesive joints exhibit several advantages over conventional joints based on mechanical fasteners such as more uniform stress distribution, enhanced fatigue performance, stiffer connection, lower weight, smooth surface countor. However, the influence of environmental effects related to temperature and moisture absorption on the mechanical performance of these types of composite joints are not yet fully understood. This work investigates the hygrothermal effects on fracture toughness of composite carbon/epoxy joints under Mixed Modes I/II loading in different mode ratios (35%, 50% and 75%). Joints were produced using co-curing (CC), co-bonding (CB) and secondary bonding (SB) technologies. The specimens were submitted to an elevated temperature wet condition (ETW) at a high moisture content (90% R.H.) and high temperature (80 °C) and compared with results obtained at a room temperature ambient (RTA). The SB samples under ETW condition exhibited higher GII/GT values when compared to CC and CB specimens tested under the same aging condition. Using the scanning electronic microscopy (SEM) technique, it was possible associate the delamination process behavior of aging specimens with the fracture toughness values. The wet and hot environment affect both adhesive and adherent what results in significant changes in the failure aspects during the delamination induced failure process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijadhadh.2019.102477</doi></addata></record>
fulltext fulltext
identifier ISSN: 0143-7496
ispartof International journal of adhesion and adhesives, 2020-03, Vol.97, p.102477, Article 102477
issn 0143-7496
1879-0127
language eng
recordid cdi_proquest_journals_2369804991
source Access via ScienceDirect (Elsevier)
subjects Adhesive joints
Bonded joints
Carbon-epoxy composites
Delamination
Environmental effects
Environmental issues
Epoxides
Fasteners
Fractography
Fracture toughness
High temperature
Mechanical properties
Moisture absorption
Moisture content
Resin –based composites
Room temperature
Stress concentration
Stress distribution
title Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hygrothermal%20effects%20on%20mixed%20mode%20I/II%20interlaminar%20fracture%20toughness%20of%20carbon%20composites%20joints&rft.jtitle=International%20journal%20of%20adhesion%20and%20adhesives&rft.au=Sales,%20R.C.M.&rft.date=2020-03&rft.volume=97&rft.spage=102477&rft.pages=102477-&rft.artnum=102477&rft.issn=0143-7496&rft.eissn=1879-0127&rft_id=info:doi/10.1016/j.ijadhadh.2019.102477&rft_dat=%3Cproquest_cross%3E2369804991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369804991&rft_id=info:pmid/&rft_els_id=S014374961930226X&rfr_iscdi=true