A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring
Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Bl...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-03, Vol.30 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Cheng, Xuanbing Wang, Bo Zhao, Yichao Hojaiji, Hannaneh Lin, Shuyu Shih, Ryan Lin, Haisong Tamayosa, Stephanie Ham, Brittany Stout, Phoenix Salahi, Kamyar Wang, Zhaoqing Zhao, Chuanzhen Tan, Jiawei Emaminejad, Sam |
description | Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Blue presents fundamental challenges including: 1) the susceptibility of the sensor response to dynamic concentration variation of ionic species and 2) the poor operational stability due to the degradation of its framework. As an alternative wearable electroenzymatic sensor development methodology to bypass the aforementioned limitations, a mediator‐free sensing interface is devised, comprising of a coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane. The interface is adapted to develop sensors targeting glucose, lactate, and choline (as examples of informative metabolites and nutrients), showing high degrees of sensitivity, selectivity (against a wide panel of naturally present and diverse interfering species), stability ( |
doi_str_mv | 10.1002/adfm.201908507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369753275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369753275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-c5c32b8cdb06c4730980059dbd43daee4e430bfef72e2c10091ca443dd6d1e3c3</originalsourceid><addsrcrecordid>eNqFkc1OAyEUhYnRxFrduiZx4aoVhulMZ9nUVpt0NPEnupswcKk000GBasaVj-Br-Fo-idRqXbog3HDP-S5wEDqkpEsJiU64VItuRGhG-j2SbqEWTWjSYSTqb29qer-L9pybE0LTlMUt9DHAOUjNvbGfb-9jC4BHFQhvDdSvzYJ7LfA11E7XsyD0D0aayswa7A3Otdcz7gFPTB1UvJa_Vi68fg7ntQerwELt3TEeKRWaDitj8RVUmpcV4Dvg9rsIbF6aSgfcCnSx9FYHH84DO9wtjN9HO4pXDg5-9ja6HY9uhued6eXZZDiYdgQLb-qInmBR2ReyJImIU0ayPiG9TJYyZpIDxBAzUipQaQSRCB-XUcHj0JOJpMAEa6OjNffRmqclOF_MzdLWYWQRsSRLeywKq426a5WwxjkLqni0esFtU1BSrOIoVnEUmziCIVsbXnQFzT_qYnA6zv-8X6Swk9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369753275</pqid></control><display><type>article</type><title>A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring</title><source>Wiley Journals</source><creator>Cheng, Xuanbing ; Wang, Bo ; Zhao, Yichao ; Hojaiji, Hannaneh ; Lin, Shuyu ; Shih, Ryan ; Lin, Haisong ; Tamayosa, Stephanie ; Ham, Brittany ; Stout, Phoenix ; Salahi, Kamyar ; Wang, Zhaoqing ; Zhao, Chuanzhen ; Tan, Jiawei ; Emaminejad, Sam</creator><creatorcontrib>Cheng, Xuanbing ; Wang, Bo ; Zhao, Yichao ; Hojaiji, Hannaneh ; Lin, Shuyu ; Shih, Ryan ; Lin, Haisong ; Tamayosa, Stephanie ; Ham, Brittany ; Stout, Phoenix ; Salahi, Kamyar ; Wang, Zhaoqing ; Zhao, Chuanzhen ; Tan, Jiawei ; Emaminejad, Sam</creatorcontrib><description>Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Blue presents fundamental challenges including: 1) the susceptibility of the sensor response to dynamic concentration variation of ionic species and 2) the poor operational stability due to the degradation of its framework. As an alternative wearable electroenzymatic sensor development methodology to bypass the aforementioned limitations, a mediator‐free sensing interface is devised, comprising of a coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane. The interface is adapted to develop sensors targeting glucose, lactate, and choline (as examples of informative metabolites and nutrients), showing high degrees of sensitivity, selectivity (against a wide panel of naturally present and diverse interfering species), stability (<6.5% signal drift over 20 h operation), and reliability of sensing operation in sweat samples. By integration within a readout board, a wireless sample‐to‐answer system is realized for on‐body sweat biomarker analysis. This methodology can be adapted to target a wide panel of biomarkers in various biofluids, introducing a new sensor development direction for personal health monitoring.
Characterization of conventional Prussian Blue‐based wearable enzymatic sensors reveals several fundamental challenges that need to be resolved for reliable operation in complex biofluids. Accordingly, an alternative mediator‐free wearable electroenzymatic sensing system is devised, where the experimental results indicate the high degrees of sensitivity, selectivity, and stability of the developed sensors for wireless biofluid analysis.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908507</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biomarkers ; Biomolecules ; Choline ; Detection ; Dynamic stability ; electrochemical sensors ; Materials science ; mediator‐free sensors ; metabolite monitoring ; Metabolites ; Methodology ; Multi wall carbon nanotubes ; Nanoparticles ; nutrient monitoring ; Nutrients ; Pigments ; Platinum ; Selectivity ; Sensors ; Sweat ; wearable biomarker sensors ; Wearable technology</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (10), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-c5c32b8cdb06c4730980059dbd43daee4e430bfef72e2c10091ca443dd6d1e3c3</citedby><cites>FETCH-LOGICAL-c3177-c5c32b8cdb06c4730980059dbd43daee4e430bfef72e2c10091ca443dd6d1e3c3</cites><orcidid>0000-0001-7682-0759 ; 0000-0003-0132-152X ; 0000-0002-2884-8105 ; 0000-0002-3986-3415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908507$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908507$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheng, Xuanbing</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Zhao, Yichao</creatorcontrib><creatorcontrib>Hojaiji, Hannaneh</creatorcontrib><creatorcontrib>Lin, Shuyu</creatorcontrib><creatorcontrib>Shih, Ryan</creatorcontrib><creatorcontrib>Lin, Haisong</creatorcontrib><creatorcontrib>Tamayosa, Stephanie</creatorcontrib><creatorcontrib>Ham, Brittany</creatorcontrib><creatorcontrib>Stout, Phoenix</creatorcontrib><creatorcontrib>Salahi, Kamyar</creatorcontrib><creatorcontrib>Wang, Zhaoqing</creatorcontrib><creatorcontrib>Zhao, Chuanzhen</creatorcontrib><creatorcontrib>Tan, Jiawei</creatorcontrib><creatorcontrib>Emaminejad, Sam</creatorcontrib><title>A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring</title><title>Advanced functional materials</title><description>Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Blue presents fundamental challenges including: 1) the susceptibility of the sensor response to dynamic concentration variation of ionic species and 2) the poor operational stability due to the degradation of its framework. As an alternative wearable electroenzymatic sensor development methodology to bypass the aforementioned limitations, a mediator‐free sensing interface is devised, comprising of a coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane. The interface is adapted to develop sensors targeting glucose, lactate, and choline (as examples of informative metabolites and nutrients), showing high degrees of sensitivity, selectivity (against a wide panel of naturally present and diverse interfering species), stability (<6.5% signal drift over 20 h operation), and reliability of sensing operation in sweat samples. By integration within a readout board, a wireless sample‐to‐answer system is realized for on‐body sweat biomarker analysis. This methodology can be adapted to target a wide panel of biomarkers in various biofluids, introducing a new sensor development direction for personal health monitoring.
Characterization of conventional Prussian Blue‐based wearable enzymatic sensors reveals several fundamental challenges that need to be resolved for reliable operation in complex biofluids. Accordingly, an alternative mediator‐free wearable electroenzymatic sensing system is devised, where the experimental results indicate the high degrees of sensitivity, selectivity, and stability of the developed sensors for wireless biofluid analysis.</description><subject>Biomarkers</subject><subject>Biomolecules</subject><subject>Choline</subject><subject>Detection</subject><subject>Dynamic stability</subject><subject>electrochemical sensors</subject><subject>Materials science</subject><subject>mediator‐free sensors</subject><subject>metabolite monitoring</subject><subject>Metabolites</subject><subject>Methodology</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoparticles</subject><subject>nutrient monitoring</subject><subject>Nutrients</subject><subject>Pigments</subject><subject>Platinum</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Sweat</subject><subject>wearable biomarker sensors</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OAyEUhYnRxFrduiZx4aoVhulMZ9nUVpt0NPEnupswcKk000GBasaVj-Br-Fo-idRqXbog3HDP-S5wEDqkpEsJiU64VItuRGhG-j2SbqEWTWjSYSTqb29qer-L9pybE0LTlMUt9DHAOUjNvbGfb-9jC4BHFQhvDdSvzYJ7LfA11E7XsyD0D0aayswa7A3Otdcz7gFPTB1UvJa_Vi68fg7ntQerwELt3TEeKRWaDitj8RVUmpcV4Dvg9rsIbF6aSgfcCnSx9FYHH84DO9wtjN9HO4pXDg5-9ja6HY9uhued6eXZZDiYdgQLb-qInmBR2ReyJImIU0ayPiG9TJYyZpIDxBAzUipQaQSRCB-XUcHj0JOJpMAEa6OjNffRmqclOF_MzdLWYWQRsSRLeywKq426a5WwxjkLqni0esFtU1BSrOIoVnEUmziCIVsbXnQFzT_qYnA6zv-8X6Swk9A</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cheng, Xuanbing</creator><creator>Wang, Bo</creator><creator>Zhao, Yichao</creator><creator>Hojaiji, Hannaneh</creator><creator>Lin, Shuyu</creator><creator>Shih, Ryan</creator><creator>Lin, Haisong</creator><creator>Tamayosa, Stephanie</creator><creator>Ham, Brittany</creator><creator>Stout, Phoenix</creator><creator>Salahi, Kamyar</creator><creator>Wang, Zhaoqing</creator><creator>Zhao, Chuanzhen</creator><creator>Tan, Jiawei</creator><creator>Emaminejad, Sam</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7682-0759</orcidid><orcidid>https://orcid.org/0000-0003-0132-152X</orcidid><orcidid>https://orcid.org/0000-0002-2884-8105</orcidid><orcidid>https://orcid.org/0000-0002-3986-3415</orcidid></search><sort><creationdate>20200301</creationdate><title>A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring</title><author>Cheng, Xuanbing ; Wang, Bo ; Zhao, Yichao ; Hojaiji, Hannaneh ; Lin, Shuyu ; Shih, Ryan ; Lin, Haisong ; Tamayosa, Stephanie ; Ham, Brittany ; Stout, Phoenix ; Salahi, Kamyar ; Wang, Zhaoqing ; Zhao, Chuanzhen ; Tan, Jiawei ; Emaminejad, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-c5c32b8cdb06c4730980059dbd43daee4e430bfef72e2c10091ca443dd6d1e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Biomolecules</topic><topic>Choline</topic><topic>Detection</topic><topic>Dynamic stability</topic><topic>electrochemical sensors</topic><topic>Materials science</topic><topic>mediator‐free sensors</topic><topic>metabolite monitoring</topic><topic>Metabolites</topic><topic>Methodology</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoparticles</topic><topic>nutrient monitoring</topic><topic>Nutrients</topic><topic>Pigments</topic><topic>Platinum</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Sweat</topic><topic>wearable biomarker sensors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xuanbing</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Zhao, Yichao</creatorcontrib><creatorcontrib>Hojaiji, Hannaneh</creatorcontrib><creatorcontrib>Lin, Shuyu</creatorcontrib><creatorcontrib>Shih, Ryan</creatorcontrib><creatorcontrib>Lin, Haisong</creatorcontrib><creatorcontrib>Tamayosa, Stephanie</creatorcontrib><creatorcontrib>Ham, Brittany</creatorcontrib><creatorcontrib>Stout, Phoenix</creatorcontrib><creatorcontrib>Salahi, Kamyar</creatorcontrib><creatorcontrib>Wang, Zhaoqing</creatorcontrib><creatorcontrib>Zhao, Chuanzhen</creatorcontrib><creatorcontrib>Tan, Jiawei</creatorcontrib><creatorcontrib>Emaminejad, Sam</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xuanbing</au><au>Wang, Bo</au><au>Zhao, Yichao</au><au>Hojaiji, Hannaneh</au><au>Lin, Shuyu</au><au>Shih, Ryan</au><au>Lin, Haisong</au><au>Tamayosa, Stephanie</au><au>Ham, Brittany</au><au>Stout, Phoenix</au><au>Salahi, Kamyar</au><au>Wang, Zhaoqing</au><au>Zhao, Chuanzhen</au><au>Tan, Jiawei</au><au>Emaminejad, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Blue presents fundamental challenges including: 1) the susceptibility of the sensor response to dynamic concentration variation of ionic species and 2) the poor operational stability due to the degradation of its framework. As an alternative wearable electroenzymatic sensor development methodology to bypass the aforementioned limitations, a mediator‐free sensing interface is devised, comprising of a coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane. The interface is adapted to develop sensors targeting glucose, lactate, and choline (as examples of informative metabolites and nutrients), showing high degrees of sensitivity, selectivity (against a wide panel of naturally present and diverse interfering species), stability (<6.5% signal drift over 20 h operation), and reliability of sensing operation in sweat samples. By integration within a readout board, a wireless sample‐to‐answer system is realized for on‐body sweat biomarker analysis. This methodology can be adapted to target a wide panel of biomarkers in various biofluids, introducing a new sensor development direction for personal health monitoring.
Characterization of conventional Prussian Blue‐based wearable enzymatic sensors reveals several fundamental challenges that need to be resolved for reliable operation in complex biofluids. Accordingly, an alternative mediator‐free wearable electroenzymatic sensing system is devised, where the experimental results indicate the high degrees of sensitivity, selectivity, and stability of the developed sensors for wireless biofluid analysis.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908507</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7682-0759</orcidid><orcidid>https://orcid.org/0000-0003-0132-152X</orcidid><orcidid>https://orcid.org/0000-0002-2884-8105</orcidid><orcidid>https://orcid.org/0000-0002-3986-3415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-03, Vol.30 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2369753275 |
source | Wiley Journals |
subjects | Biomarkers Biomolecules Choline Detection Dynamic stability electrochemical sensors Materials science mediator‐free sensors metabolite monitoring Metabolites Methodology Multi wall carbon nanotubes Nanoparticles nutrient monitoring Nutrients Pigments Platinum Selectivity Sensors Sweat wearable biomarker sensors Wearable technology |
title | A Mediator‐Free Electroenzymatic Sensing Methodology to Mitigate Ionic and Electroactive Interferents' Effects for Reliable Wearable Metabolite and Nutrient Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mediator%E2%80%90Free%20Electroenzymatic%20Sensing%20Methodology%20to%20Mitigate%20Ionic%20and%20Electroactive%20Interferents'%20Effects%20for%20Reliable%20Wearable%20Metabolite%20and%20Nutrient%20Monitoring&rft.jtitle=Advanced%20functional%20materials&rft.au=Cheng,%20Xuanbing&rft.date=2020-03-01&rft.volume=30&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908507&rft_dat=%3Cproquest_cross%3E2369753275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369753275&rft_id=info:pmid/&rfr_iscdi=true |