Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH

Electrochemical water splitting is one of the ways to produce environmentally‐friendly hydrogen energy. Transition‐metal (TM)‐based catalysts have been attracting attention due to their low cost and abundance, but their insufficient activity still remains a challenge. Here, 4 nm Mn3O4 nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (10), p.n/a
Hauptverfasser: Cho, Kang Hee, Seo, Hongmin, Park, Sunghak, Lee, Yoon Ho, Lee, Moo Young, Cho, Nam Heon, Nam, Ki Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced functional materials
container_volume 30
creator Cho, Kang Hee
Seo, Hongmin
Park, Sunghak
Lee, Yoon Ho
Lee, Moo Young
Cho, Nam Heon
Nam, Ki Tae
description Electrochemical water splitting is one of the ways to produce environmentally‐friendly hydrogen energy. Transition‐metal (TM)‐based catalysts have been attracting attention due to their low cost and abundance, but their insufficient activity still remains a challenge. Here, 4 nm Mn3O4 nanoparticles (NPs) are successfully synthesized and their electrochemical behavior is investigated. Using electrokinetic analyses, an identical water oxidizing mechanism is demonstrated between the 4 and 8 nm Mn3O4 NPs. In addition, it is confirmed that the overall increase in the active surface area is strongly correlated with the superb catalytic activity of the 4 nm Mn3O4 NPs. To further enhance the oxygen evolution reaction (OER) performance, Ni foam substrate is introduced to maximize the entire number of the NPs participating in OER. The 4 nm Mn3O4/Ni foam electrode exhibits outstanding electrocatalytic activity for OER with overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions (0.5 m PBS, pH 7). Uniform 4 nm Mn3O4 nanoparticles (NPs) are synthesized and their electrokinetic behaviors are investigated under neutral conditions. The 4 nm Mn3O4 NPs exhibit outstanding electrocatalytic activity for OER, with an overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions. Also, various electrochemical analyses verify that the increased surface area contributes to the high catalytic activity.
doi_str_mv 10.1002/adfm.201910424
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2369753256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369753256</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2704-f753904c5079c0ecd3c9bed18350793134504952a792e9020a8121753c71885c3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKtXzwGvbp08drM5ltpaoY-LRW8hzWZLyr5MUrT_vVsqPc3Mj29m4EPokcCIANAXXZT1iAKRBDjlV2hAMpIlDGh-fenJ1y26C2EPQIRgfIB2m8aVra-f8TgEW28rW2COmxovG7bmeKWbttM-OlPZgHXA07J0xtkm4k8drcfrX1fo6NoGTytrom-Njro6htjTEa_sIXpd4W5-j25KXQX78F-HaDObfkzmyWL99j4ZL5IdFcCTUqRMAjcpCGnAmoIZubUFydkpYYTxFLhMqRaSWgkUdE4o6ZeMIHmeGjZET-e7nW-_DzZEtW8PvulfKsoy2ZM0zXpKnqkfV9mj6ryrtT8qAupkUp1MqotJNX6dLS8T-wPD42ep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369753256</pqid></control><display><type>article</type><title>Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cho, Kang Hee ; Seo, Hongmin ; Park, Sunghak ; Lee, Yoon Ho ; Lee, Moo Young ; Cho, Nam Heon ; Nam, Ki Tae</creator><creatorcontrib>Cho, Kang Hee ; Seo, Hongmin ; Park, Sunghak ; Lee, Yoon Ho ; Lee, Moo Young ; Cho, Nam Heon ; Nam, Ki Tae</creatorcontrib><description>Electrochemical water splitting is one of the ways to produce environmentally‐friendly hydrogen energy. Transition‐metal (TM)‐based catalysts have been attracting attention due to their low cost and abundance, but their insufficient activity still remains a challenge. Here, 4 nm Mn3O4 nanoparticles (NPs) are successfully synthesized and their electrochemical behavior is investigated. Using electrokinetic analyses, an identical water oxidizing mechanism is demonstrated between the 4 and 8 nm Mn3O4 NPs. In addition, it is confirmed that the overall increase in the active surface area is strongly correlated with the superb catalytic activity of the 4 nm Mn3O4 NPs. To further enhance the oxygen evolution reaction (OER) performance, Ni foam substrate is introduced to maximize the entire number of the NPs participating in OER. The 4 nm Mn3O4/Ni foam electrode exhibits outstanding electrocatalytic activity for OER with overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions (0.5 m PBS, pH 7). Uniform 4 nm Mn3O4 nanoparticles (NPs) are synthesized and their electrokinetic behaviors are investigated under neutral conditions. The 4 nm Mn3O4 NPs exhibit outstanding electrocatalytic activity for OER, with an overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions. Also, various electrochemical analyses verify that the increased surface area contributes to the high catalytic activity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910424</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Electrocatalysts ; Electrochemical analysis ; Electrokinetics ; Hydrogen-based energy ; Manganese oxides ; manganese‐based nanoparticles ; Materials science ; Metal foams ; Nanoparticles ; neutral pH ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Substrates ; Water splitting</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (10), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6353-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cho, Kang Hee</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Park, Sunghak</creatorcontrib><creatorcontrib>Lee, Yoon Ho</creatorcontrib><creatorcontrib>Lee, Moo Young</creatorcontrib><creatorcontrib>Cho, Nam Heon</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><title>Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH</title><title>Advanced functional materials</title><description>Electrochemical water splitting is one of the ways to produce environmentally‐friendly hydrogen energy. Transition‐metal (TM)‐based catalysts have been attracting attention due to their low cost and abundance, but their insufficient activity still remains a challenge. Here, 4 nm Mn3O4 nanoparticles (NPs) are successfully synthesized and their electrochemical behavior is investigated. Using electrokinetic analyses, an identical water oxidizing mechanism is demonstrated between the 4 and 8 nm Mn3O4 NPs. In addition, it is confirmed that the overall increase in the active surface area is strongly correlated with the superb catalytic activity of the 4 nm Mn3O4 NPs. To further enhance the oxygen evolution reaction (OER) performance, Ni foam substrate is introduced to maximize the entire number of the NPs participating in OER. The 4 nm Mn3O4/Ni foam electrode exhibits outstanding electrocatalytic activity for OER with overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions (0.5 m PBS, pH 7). Uniform 4 nm Mn3O4 nanoparticles (NPs) are synthesized and their electrokinetic behaviors are investigated under neutral conditions. The 4 nm Mn3O4 NPs exhibit outstanding electrocatalytic activity for OER, with an overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions. Also, various electrochemical analyses verify that the increased surface area contributes to the high catalytic activity.</description><subject>Catalytic activity</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrokinetics</subject><subject>Hydrogen-based energy</subject><subject>Manganese oxides</subject><subject>manganese‐based nanoparticles</subject><subject>Materials science</subject><subject>Metal foams</subject><subject>Nanoparticles</subject><subject>neutral pH</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEQh4MoWKtXzwGvbp08drM5ltpaoY-LRW8hzWZLyr5MUrT_vVsqPc3Mj29m4EPokcCIANAXXZT1iAKRBDjlV2hAMpIlDGh-fenJ1y26C2EPQIRgfIB2m8aVra-f8TgEW28rW2COmxovG7bmeKWbttM-OlPZgHXA07J0xtkm4k8drcfrX1fo6NoGTytrom-Njro6htjTEa_sIXpd4W5-j25KXQX78F-HaDObfkzmyWL99j4ZL5IdFcCTUqRMAjcpCGnAmoIZubUFydkpYYTxFLhMqRaSWgkUdE4o6ZeMIHmeGjZET-e7nW-_DzZEtW8PvulfKsoy2ZM0zXpKnqkfV9mj6ryrtT8qAupkUp1MqotJNX6dLS8T-wPD42ep</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cho, Kang Hee</creator><creator>Seo, Hongmin</creator><creator>Park, Sunghak</creator><creator>Lee, Yoon Ho</creator><creator>Lee, Moo Young</creator><creator>Cho, Nam Heon</creator><creator>Nam, Ki Tae</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6353-8877</orcidid></search><sort><creationdate>20200301</creationdate><title>Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH</title><author>Cho, Kang Hee ; Seo, Hongmin ; Park, Sunghak ; Lee, Yoon Ho ; Lee, Moo Young ; Cho, Nam Heon ; Nam, Ki Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2704-f753904c5079c0ecd3c9bed18350793134504952a792e9020a8121753c71885c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrokinetics</topic><topic>Hydrogen-based energy</topic><topic>Manganese oxides</topic><topic>manganese‐based nanoparticles</topic><topic>Materials science</topic><topic>Metal foams</topic><topic>Nanoparticles</topic><topic>neutral pH</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Kang Hee</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Park, Sunghak</creatorcontrib><creatorcontrib>Lee, Yoon Ho</creatorcontrib><creatorcontrib>Lee, Moo Young</creatorcontrib><creatorcontrib>Cho, Nam Heon</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Kang Hee</au><au>Seo, Hongmin</au><au>Park, Sunghak</au><au>Lee, Yoon Ho</au><au>Lee, Moo Young</au><au>Cho, Nam Heon</au><au>Nam, Ki Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrochemical water splitting is one of the ways to produce environmentally‐friendly hydrogen energy. Transition‐metal (TM)‐based catalysts have been attracting attention due to their low cost and abundance, but their insufficient activity still remains a challenge. Here, 4 nm Mn3O4 nanoparticles (NPs) are successfully synthesized and their electrochemical behavior is investigated. Using electrokinetic analyses, an identical water oxidizing mechanism is demonstrated between the 4 and 8 nm Mn3O4 NPs. In addition, it is confirmed that the overall increase in the active surface area is strongly correlated with the superb catalytic activity of the 4 nm Mn3O4 NPs. To further enhance the oxygen evolution reaction (OER) performance, Ni foam substrate is introduced to maximize the entire number of the NPs participating in OER. The 4 nm Mn3O4/Ni foam electrode exhibits outstanding electrocatalytic activity for OER with overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions (0.5 m PBS, pH 7). Uniform 4 nm Mn3O4 nanoparticles (NPs) are synthesized and their electrokinetic behaviors are investigated under neutral conditions. The 4 nm Mn3O4 NPs exhibit outstanding electrocatalytic activity for OER, with an overpotential of 395 mV at a current density of 10 mA cm−2 under neutral conditions. Also, various electrochemical analyses verify that the increased surface area contributes to the high catalytic activity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910424</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6353-8877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (10), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2369753256
source Wiley Online Library Journals Frontfile Complete
subjects Catalytic activity
Electrocatalysts
Electrochemical analysis
Electrokinetics
Hydrogen-based energy
Manganese oxides
manganese‐based nanoparticles
Materials science
Metal foams
Nanoparticles
neutral pH
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Substrates
Water splitting
title Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform,%20Assembled%204%20nm%20Mn3O4%20Nanoparticles%20as%20Efficient%20Water%20Oxidation%20Electrocatalysts%20at%20Neutral%20pH&rft.jtitle=Advanced%20functional%20materials&rft.au=Cho,%20Kang%20Hee&rft.date=2020-03-01&rft.volume=30&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910424&rft_dat=%3Cproquest_wiley%3E2369753256%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369753256&rft_id=info:pmid/&rfr_iscdi=true