The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations

In this paper, we first build a semi‐discretized Crank–Nicolson (CN) model about time for the two‐dimensional (2D) non‐stationary Navier–Stokes equations about vorticity–stream functions and discuss the existence, stability, and convergence of the time semi‐discretized CN solutions. And then, we bui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-03, Vol.43 (5), p.2276-2288
Hauptverfasser: Luo, Zhendong, Jiang, Wenrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2288
container_issue 5
container_start_page 2276
container_title Mathematical methods in the applied sciences
container_volume 43
creator Luo, Zhendong
Jiang, Wenrui
description In this paper, we first build a semi‐discretized Crank–Nicolson (CN) model about time for the two‐dimensional (2D) non‐stationary Navier–Stokes equations about vorticity–stream functions and discuss the existence, stability, and convergence of the time semi‐discretized CN solutions. And then, we build a fully discretized finite spectral element CN (FSECN) model based on the bilinear trigonometric basic functions on quadrilateral elements for the 2D non‐stationary Navier–Stokes equations about the vorticity–stream functions and discuss the existence, stability, and convergence of the FSECN solutions. Finally, we utilize two sets of numerical experiments to check out the correctness of theoretical consequences.
doi_str_mv 10.1002/mma.6039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369712535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369712535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-e39e2ee4d5ea1cc145620f4e4835bee2f127dcf3cff1a4d15c58e722006b28e43</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqUgcQRLbNik2I7zWlblKbVlQVlHrjNW3SZ2ayegrugRkLhhT0LasGU10sw382s-hK4pGVBC2F1ViUFMwuwE9SjJsoDyJD5FPUITEnBG-Tm68H5JCEkpZT30NVsAHjlhVvvdz1RLW3prsNJG14D9GmTtRImhhApMjSuoF7bAwhTYNBU4Lduh11VTilpb47GyDrN7bKzZ7759fewKt8VT8aHBtRFvtV2Bx7Bpuo1LdKZE6eHqr_bR--PDbPQcjF-fXkbDcSBZFmYBhBkwAF5EIKiUlEcxI4oDT8NoDsAUZUkhVSiVooIXNJJRCgljhMRzlgIP--imu7t2dtOAr_OlbZxpI3MWxllCWRRGLXXbUdJZ7x2ofO101T6QU5If9Oat3vygt0WDDv3UJWz_5fLJZHjkfwH3M4D3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369712535</pqid></control><display><type>article</type><title>The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Zhendong ; Jiang, Wenrui</creator><creatorcontrib>Luo, Zhendong ; Jiang, Wenrui</creatorcontrib><description>In this paper, we first build a semi‐discretized Crank–Nicolson (CN) model about time for the two‐dimensional (2D) non‐stationary Navier–Stokes equations about vorticity–stream functions and discuss the existence, stability, and convergence of the time semi‐discretized CN solutions. And then, we build a fully discretized finite spectral element CN (FSECN) model based on the bilinear trigonometric basic functions on quadrilateral elements for the 2D non‐stationary Navier–Stokes equations about the vorticity–stream functions and discuss the existence, stability, and convergence of the FSECN solutions. Finally, we utilize two sets of numerical experiments to check out the correctness of theoretical consequences.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6039</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Computational fluid dynamics ; Computer simulation ; Convergence ; Discretization ; existence and stability as well as convergence ; Fluid flow ; fully discretized finite spectral element Crank–Nicolson model ; Mathematical models ; Navier-Stokes equations ; Quadrilaterals ; semi‐discretized Crank–Nicolson model ; Spectral element method ; Stability ; Two dimensional models ; two‐dimensional non‐stationary Navier–Stokes equations about vorticity‐stream functions ; Vorticity</subject><ispartof>Mathematical methods in the applied sciences, 2020-03, Vol.43 (5), p.2276-2288</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-e39e2ee4d5ea1cc145620f4e4835bee2f127dcf3cff1a4d15c58e722006b28e43</citedby><cites>FETCH-LOGICAL-c2939-e39e2ee4d5ea1cc145620f4e4835bee2f127dcf3cff1a4d15c58e722006b28e43</cites><orcidid>0000-0002-9469-7018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Luo, Zhendong</creatorcontrib><creatorcontrib>Jiang, Wenrui</creatorcontrib><title>The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we first build a semi‐discretized Crank–Nicolson (CN) model about time for the two‐dimensional (2D) non‐stationary Navier–Stokes equations about vorticity–stream functions and discuss the existence, stability, and convergence of the time semi‐discretized CN solutions. And then, we build a fully discretized finite spectral element CN (FSECN) model based on the bilinear trigonometric basic functions on quadrilateral elements for the 2D non‐stationary Navier–Stokes equations about the vorticity–stream functions and discuss the existence, stability, and convergence of the FSECN solutions. Finally, we utilize two sets of numerical experiments to check out the correctness of theoretical consequences.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Discretization</subject><subject>existence and stability as well as convergence</subject><subject>Fluid flow</subject><subject>fully discretized finite spectral element Crank–Nicolson model</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Quadrilaterals</subject><subject>semi‐discretized Crank–Nicolson model</subject><subject>Spectral element method</subject><subject>Stability</subject><subject>Two dimensional models</subject><subject>two‐dimensional non‐stationary Navier–Stokes equations about vorticity‐stream functions</subject><subject>Vorticity</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqUgcQRLbNik2I7zWlblKbVlQVlHrjNW3SZ2ayegrugRkLhhT0LasGU10sw382s-hK4pGVBC2F1ViUFMwuwE9SjJsoDyJD5FPUITEnBG-Tm68H5JCEkpZT30NVsAHjlhVvvdz1RLW3prsNJG14D9GmTtRImhhApMjSuoF7bAwhTYNBU4Lduh11VTilpb47GyDrN7bKzZ7759fewKt8VT8aHBtRFvtV2Bx7Bpuo1LdKZE6eHqr_bR--PDbPQcjF-fXkbDcSBZFmYBhBkwAF5EIKiUlEcxI4oDT8NoDsAUZUkhVSiVooIXNJJRCgljhMRzlgIP--imu7t2dtOAr_OlbZxpI3MWxllCWRRGLXXbUdJZ7x2ofO101T6QU5If9Oat3vygt0WDDv3UJWz_5fLJZHjkfwH3M4D3</recordid><startdate>20200330</startdate><enddate>20200330</enddate><creator>Luo, Zhendong</creator><creator>Jiang, Wenrui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9469-7018</orcidid></search><sort><creationdate>20200330</creationdate><title>The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations</title><author>Luo, Zhendong ; Jiang, Wenrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-e39e2ee4d5ea1cc145620f4e4835bee2f127dcf3cff1a4d15c58e722006b28e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Discretization</topic><topic>existence and stability as well as convergence</topic><topic>Fluid flow</topic><topic>fully discretized finite spectral element Crank–Nicolson model</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Quadrilaterals</topic><topic>semi‐discretized Crank–Nicolson model</topic><topic>Spectral element method</topic><topic>Stability</topic><topic>Two dimensional models</topic><topic>two‐dimensional non‐stationary Navier–Stokes equations about vorticity‐stream functions</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zhendong</creatorcontrib><creatorcontrib>Jiang, Wenrui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zhendong</au><au>Jiang, Wenrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-03-30</date><risdate>2020</risdate><volume>43</volume><issue>5</issue><spage>2276</spage><epage>2288</epage><pages>2276-2288</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we first build a semi‐discretized Crank–Nicolson (CN) model about time for the two‐dimensional (2D) non‐stationary Navier–Stokes equations about vorticity–stream functions and discuss the existence, stability, and convergence of the time semi‐discretized CN solutions. And then, we build a fully discretized finite spectral element CN (FSECN) model based on the bilinear trigonometric basic functions on quadrilateral elements for the 2D non‐stationary Navier–Stokes equations about the vorticity–stream functions and discuss the existence, stability, and convergence of the FSECN solutions. Finally, we utilize two sets of numerical experiments to check out the correctness of theoretical consequences.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6039</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9469-7018</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-03, Vol.43 (5), p.2276-2288
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2369712535
source Wiley Online Library Journals Frontfile Complete
subjects Computational fluid dynamics
Computer simulation
Convergence
Discretization
existence and stability as well as convergence
Fluid flow
fully discretized finite spectral element Crank–Nicolson model
Mathematical models
Navier-Stokes equations
Quadrilaterals
semi‐discretized Crank–Nicolson model
Spectral element method
Stability
Two dimensional models
two‐dimensional non‐stationary Navier–Stokes equations about vorticity‐stream functions
Vorticity
title The Crank–Nicolson finite spectral element method and numerical simulations for 2D non‐stationary Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crank%E2%80%93Nicolson%20finite%20spectral%20element%20method%20and%20numerical%20simulations%20for%202D%20non%E2%80%90stationary%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Luo,%20Zhendong&rft.date=2020-03-30&rft.volume=43&rft.issue=5&rft.spage=2276&rft.epage=2288&rft.pages=2276-2288&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6039&rft_dat=%3Cproquest_cross%3E2369712535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369712535&rft_id=info:pmid/&rfr_iscdi=true