Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection
Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2020-04, Vol.32 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 32 |
creator | Wang, Xiancheng Jiang, Zhangwei Li, Wei Zarei, Roozbeh Huang, Guangyan Ulhaq, Anwaar Yin, Xiaoxia Zhang, Bailing Shi, Peng Guo, Mengjiao He, Jing |
description | Summary
The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram. |
doi_str_mv | 10.1002/cpe.5599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369702459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369702459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhS_BO79VhV5UeqBEP3yHZuiqs0LnbSkk6sbDwjT4LbIjame-7Vp6NzT5JcEzwgGNM7s4YB51KeJD3CGU2xYNnpn6biPLkIYYkxIZiRXvI5No3dADKublzrA9ra5hVVzqgKqbpAi8rpKKEGv-iQVgGK748vV6Oy3e06ZKo2NOBtvTjQK_VuV-0KKbR2h7vzaO2jg7aVbTpUxt1DY-touYEQoEIFNBAjuPoyOStVFeDqd_aT-f10PnlMZ88PT5PxLDVUMplygQVkIGRGtTYZJ1ILIQVlfGQwVrqURcmG2OBhwUclyzBnmo-EoVgRTTPWT26OtjHXWwuhyZfx7xgo5JQJOcQ04zJSt0fKeBeChzJfe7tSvssJzvc957HnfN9zRNMjurUVdP9y-eRleuB_ALI7gZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369702459</pqid></control><display><type>article</type><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</creator><creatorcontrib>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</creatorcontrib><description>Summary
The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5599</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>active contour model ; Blood vessels ; Clustering ; Conditional probability ; Contours ; fuzzy clustering ; Gaussian distribution ; Image contrast ; Image segmentation ; Inhomogeneity ; Normal distribution ; Object recognition ; retinal vessel detection ; Robustness (mathematics) ; Shape ; Statistical analysis ; vessel image ; Weighting functions</subject><ispartof>Concurrency and computation, 2020-04, Vol.32 (7), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</citedby><cites>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</cites><orcidid>0000-0001-6488-1052 ; 0000-0001-7029-5797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Jiang, Zhangwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zarei, Roozbeh</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Ulhaq, Anwaar</creatorcontrib><creatorcontrib>Yin, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Bailing</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Guo, Mengjiao</creatorcontrib><creatorcontrib>He, Jing</creatorcontrib><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><title>Concurrency and computation</title><description>Summary
The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</description><subject>active contour model</subject><subject>Blood vessels</subject><subject>Clustering</subject><subject>Conditional probability</subject><subject>Contours</subject><subject>fuzzy clustering</subject><subject>Gaussian distribution</subject><subject>Image contrast</subject><subject>Image segmentation</subject><subject>Inhomogeneity</subject><subject>Normal distribution</subject><subject>Object recognition</subject><subject>retinal vessel detection</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>vessel image</subject><subject>Weighting functions</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhS_BO79VhV5UeqBEP3yHZuiqs0LnbSkk6sbDwjT4LbIjame-7Vp6NzT5JcEzwgGNM7s4YB51KeJD3CGU2xYNnpn6biPLkIYYkxIZiRXvI5No3dADKublzrA9ra5hVVzqgKqbpAi8rpKKEGv-iQVgGK748vV6Oy3e06ZKo2NOBtvTjQK_VuV-0KKbR2h7vzaO2jg7aVbTpUxt1DY-touYEQoEIFNBAjuPoyOStVFeDqd_aT-f10PnlMZ88PT5PxLDVUMplygQVkIGRGtTYZJ1ILIQVlfGQwVrqURcmG2OBhwUclyzBnmo-EoVgRTTPWT26OtjHXWwuhyZfx7xgo5JQJOcQ04zJSt0fKeBeChzJfe7tSvssJzvc957HnfN9zRNMjurUVdP9y-eRleuB_ALI7gZg</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Wang, Xiancheng</creator><creator>Jiang, Zhangwei</creator><creator>Li, Wei</creator><creator>Zarei, Roozbeh</creator><creator>Huang, Guangyan</creator><creator>Ulhaq, Anwaar</creator><creator>Yin, Xiaoxia</creator><creator>Zhang, Bailing</creator><creator>Shi, Peng</creator><creator>Guo, Mengjiao</creator><creator>He, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6488-1052</orcidid><orcidid>https://orcid.org/0000-0001-7029-5797</orcidid></search><sort><creationdate>20200410</creationdate><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><author>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active contour model</topic><topic>Blood vessels</topic><topic>Clustering</topic><topic>Conditional probability</topic><topic>Contours</topic><topic>fuzzy clustering</topic><topic>Gaussian distribution</topic><topic>Image contrast</topic><topic>Image segmentation</topic><topic>Inhomogeneity</topic><topic>Normal distribution</topic><topic>Object recognition</topic><topic>retinal vessel detection</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>vessel image</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Jiang, Zhangwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zarei, Roozbeh</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Ulhaq, Anwaar</creatorcontrib><creatorcontrib>Yin, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Bailing</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Guo, Mengjiao</creatorcontrib><creatorcontrib>He, Jing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiancheng</au><au>Jiang, Zhangwei</au><au>Li, Wei</au><au>Zarei, Roozbeh</au><au>Huang, Guangyan</au><au>Ulhaq, Anwaar</au><au>Yin, Xiaoxia</au><au>Zhang, Bailing</au><au>Shi, Peng</au><au>Guo, Mengjiao</au><au>He, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</atitle><jtitle>Concurrency and computation</jtitle><date>2020-04-10</date><risdate>2020</risdate><volume>32</volume><issue>7</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5599</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6488-1052</orcidid><orcidid>https://orcid.org/0000-0001-7029-5797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2020-04, Vol.32 (7), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2369702459 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | active contour model Blood vessels Clustering Conditional probability Contours fuzzy clustering Gaussian distribution Image contrast Image segmentation Inhomogeneity Normal distribution Object recognition retinal vessel detection Robustness (mathematics) Shape Statistical analysis vessel image Weighting functions |
title | Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20contours%20with%20local%20and%20global%20energy%20based%E2%80%90on%20fuzzy%20clustering%20and%20maximum%20a%20posterior%20probability%20for%20retinal%20vessel%20detection&rft.jtitle=Concurrency%20and%20computation&rft.au=Wang,%20Xiancheng&rft.date=2020-04-10&rft.volume=32&rft.issue=7&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5599&rft_dat=%3Cproquest_cross%3E2369702459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369702459&rft_id=info:pmid/&rfr_iscdi=true |