Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection

Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2020-04, Vol.32 (7), p.n/a
Hauptverfasser: Wang, Xiancheng, Jiang, Zhangwei, Li, Wei, Zarei, Roozbeh, Huang, Guangyan, Ulhaq, Anwaar, Yin, Xiaoxia, Zhang, Bailing, Shi, Peng, Guo, Mengjiao, He, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Concurrency and computation
container_volume 32
creator Wang, Xiancheng
Jiang, Zhangwei
Li, Wei
Zarei, Roozbeh
Huang, Guangyan
Ulhaq, Anwaar
Yin, Xiaoxia
Zhang, Bailing
Shi, Peng
Guo, Mengjiao
He, Jing
description Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.
doi_str_mv 10.1002/cpe.5599
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369702459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369702459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhS_BO79VhV5UeqBEP3yHZuiqs0LnbSkk6sbDwjT4LbIjame-7Vp6NzT5JcEzwgGNM7s4YB51KeJD3CGU2xYNnpn6biPLkIYYkxIZiRXvI5No3dADKublzrA9ra5hVVzqgKqbpAi8rpKKEGv-iQVgGK748vV6Oy3e06ZKo2NOBtvTjQK_VuV-0KKbR2h7vzaO2jg7aVbTpUxt1DY-touYEQoEIFNBAjuPoyOStVFeDqd_aT-f10PnlMZ88PT5PxLDVUMplygQVkIGRGtTYZJ1ILIQVlfGQwVrqURcmG2OBhwUclyzBnmo-EoVgRTTPWT26OtjHXWwuhyZfx7xgo5JQJOcQ04zJSt0fKeBeChzJfe7tSvssJzvc957HnfN9zRNMjurUVdP9y-eRleuB_ALI7gZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369702459</pqid></control><display><type>article</type><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</creator><creatorcontrib>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</creatorcontrib><description>Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5599</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>active contour model ; Blood vessels ; Clustering ; Conditional probability ; Contours ; fuzzy clustering ; Gaussian distribution ; Image contrast ; Image segmentation ; Inhomogeneity ; Normal distribution ; Object recognition ; retinal vessel detection ; Robustness (mathematics) ; Shape ; Statistical analysis ; vessel image ; Weighting functions</subject><ispartof>Concurrency and computation, 2020-04, Vol.32 (7), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</citedby><cites>FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</cites><orcidid>0000-0001-6488-1052 ; 0000-0001-7029-5797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Jiang, Zhangwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zarei, Roozbeh</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Ulhaq, Anwaar</creatorcontrib><creatorcontrib>Yin, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Bailing</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Guo, Mengjiao</creatorcontrib><creatorcontrib>He, Jing</creatorcontrib><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><title>Concurrency and computation</title><description>Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</description><subject>active contour model</subject><subject>Blood vessels</subject><subject>Clustering</subject><subject>Conditional probability</subject><subject>Contours</subject><subject>fuzzy clustering</subject><subject>Gaussian distribution</subject><subject>Image contrast</subject><subject>Image segmentation</subject><subject>Inhomogeneity</subject><subject>Normal distribution</subject><subject>Object recognition</subject><subject>retinal vessel detection</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>vessel image</subject><subject>Weighting functions</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhS_BO79VhV5UeqBEP3yHZuiqs0LnbSkk6sbDwjT4LbIjame-7Vp6NzT5JcEzwgGNM7s4YB51KeJD3CGU2xYNnpn6biPLkIYYkxIZiRXvI5No3dADKublzrA9ra5hVVzqgKqbpAi8rpKKEGv-iQVgGK748vV6Oy3e06ZKo2NOBtvTjQK_VuV-0KKbR2h7vzaO2jg7aVbTpUxt1DY-touYEQoEIFNBAjuPoyOStVFeDqd_aT-f10PnlMZ88PT5PxLDVUMplygQVkIGRGtTYZJ1ILIQVlfGQwVrqURcmG2OBhwUclyzBnmo-EoVgRTTPWT26OtjHXWwuhyZfx7xgo5JQJOcQ04zJSt0fKeBeChzJfe7tSvssJzvc957HnfN9zRNMjurUVdP9y-eRleuB_ALI7gZg</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Wang, Xiancheng</creator><creator>Jiang, Zhangwei</creator><creator>Li, Wei</creator><creator>Zarei, Roozbeh</creator><creator>Huang, Guangyan</creator><creator>Ulhaq, Anwaar</creator><creator>Yin, Xiaoxia</creator><creator>Zhang, Bailing</creator><creator>Shi, Peng</creator><creator>Guo, Mengjiao</creator><creator>He, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6488-1052</orcidid><orcidid>https://orcid.org/0000-0001-7029-5797</orcidid></search><sort><creationdate>20200410</creationdate><title>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</title><author>Wang, Xiancheng ; Jiang, Zhangwei ; Li, Wei ; Zarei, Roozbeh ; Huang, Guangyan ; Ulhaq, Anwaar ; Yin, Xiaoxia ; Zhang, Bailing ; Shi, Peng ; Guo, Mengjiao ; He, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-5606e4e6942bbc4519b66962358c00abf9df370c07d58f34053b586c20a1b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active contour model</topic><topic>Blood vessels</topic><topic>Clustering</topic><topic>Conditional probability</topic><topic>Contours</topic><topic>fuzzy clustering</topic><topic>Gaussian distribution</topic><topic>Image contrast</topic><topic>Image segmentation</topic><topic>Inhomogeneity</topic><topic>Normal distribution</topic><topic>Object recognition</topic><topic>retinal vessel detection</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>vessel image</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiancheng</creatorcontrib><creatorcontrib>Jiang, Zhangwei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zarei, Roozbeh</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Ulhaq, Anwaar</creatorcontrib><creatorcontrib>Yin, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Bailing</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Guo, Mengjiao</creatorcontrib><creatorcontrib>He, Jing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiancheng</au><au>Jiang, Zhangwei</au><au>Li, Wei</au><au>Zarei, Roozbeh</au><au>Huang, Guangyan</au><au>Ulhaq, Anwaar</au><au>Yin, Xiaoxia</au><au>Zhang, Bailing</au><au>Shi, Peng</au><au>Guo, Mengjiao</au><au>He, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection</atitle><jtitle>Concurrency and computation</jtitle><date>2020-04-10</date><risdate>2020</risdate><volume>32</volume><issue>7</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary The performance of active contour model is limited on retinal vessel segmentation as vessel images are usually corrupted with intensity inhomogeneity, low contrast, and weak boundary, which severely affect the segmentation results of retinal vessels. A new active contour model combining the local and global information is proposed in this paper to facilitate the vessel segmentation. In our model, the fuzzy conception is firstly introduced as fuzzy methods generally provide more accurate and robust clustering and the concept of fuzziness in fuzzy clustering, which is represented by membership, can reflect the intensity distribution of the image. Then, we define local energy based on Maximum a Posterior Probability and use spatially varying parameters, mean and stand deviation, to describe the local Gaussian distribution in order to better deal with intensity inhomogeneity. Furthermore, we combine local and global energy based on fuzzy clustering, with a weight coefficient. The coefficient is computed by a weight function according to contrast ratio of the image. Experiments on synthetic and real images and comparisons with other state‐of‐the‐art active contour models show that the proposed model can detect objects more accurate and robust, especially for vessels on retinal angiogram.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5599</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6488-1052</orcidid><orcidid>https://orcid.org/0000-0001-7029-5797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2020-04, Vol.32 (7), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2369702459
source Wiley Online Library Journals Frontfile Complete
subjects active contour model
Blood vessels
Clustering
Conditional probability
Contours
fuzzy clustering
Gaussian distribution
Image contrast
Image segmentation
Inhomogeneity
Normal distribution
Object recognition
retinal vessel detection
Robustness (mathematics)
Shape
Statistical analysis
vessel image
Weighting functions
title Active contours with local and global energy based‐on fuzzy clustering and maximum a posterior probability for retinal vessel detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20contours%20with%20local%20and%20global%20energy%20based%E2%80%90on%20fuzzy%20clustering%20and%20maximum%20a%20posterior%20probability%20for%20retinal%20vessel%20detection&rft.jtitle=Concurrency%20and%20computation&rft.au=Wang,%20Xiancheng&rft.date=2020-04-10&rft.volume=32&rft.issue=7&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5599&rft_dat=%3Cproquest_cross%3E2369702459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369702459&rft_id=info:pmid/&rfr_iscdi=true