A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms

Maximum likelihood algorithms have undergone substantial development, yet marketers have been slow to adopt these techniques to address missing data. This study familiarises marketers with the available maximum likelihood estimators, reviews missing data theory and research, and presents a structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of targeting, measurement and analysis for marketing measurement and analysis for marketing, 2002-09, Vol.11 (1), p.81
Hauptverfasser: Cara Lee Okleshen Peters, Enders, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 81
container_title Journal of targeting, measurement and analysis for marketing
container_volume 11
creator Cara Lee Okleshen Peters
Enders, Craig
description Maximum likelihood algorithms have undergone substantial development, yet marketers have been slow to adopt these techniques to address missing data. This study familiarises marketers with the available maximum likelihood estimators, reviews missing data theory and research, and presents a structural equation modelling simulation study to demonstrate the advantages of maximum likelihood estimation versus other techniques. Results indicate that the full information maximum likelihood and expectation-maximisation outperform traditional techniques with respect to parameter estimate bias, model fit and parameter estimate efficiency. Marketers should be aware of the potential impact of missing data assumptions and decrease their reliance on ad hoc methods in favour of maximum likelihood estimators.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_236968953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>183785421</sourcerecordid><originalsourceid>FETCH-proquest_journals_2369689533</originalsourceid><addsrcrecordid>eNqNzs1OwzAQBGALgdQAfYcV90hJ3OaHG0IgLty4V1azabbY3nTXlvr4lJ8H4DTSzHeYK1PUm24o675trk1RDW1X2sZ2K3Oreqyqpt5s-8Kcn2ARCigwsUCaEVATBZeII_AEmiTvUxbnAU_5tw48oleg-OMXQcW4x28dSJXiAUaX3CO8uzOFHMDTJ3qamUdw_sBCaQ56b24m5xXXf3lnHl5fPp7fykX4lC8ndkfOEi_TrrHt0PbD1tp_oS9l1E9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236968953</pqid></control><display><type>article</type><title>A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms</title><source>Business Source Complete</source><creator>Cara Lee Okleshen Peters ; Enders, Craig</creator><creatorcontrib>Cara Lee Okleshen Peters ; Enders, Craig</creatorcontrib><description>Maximum likelihood algorithms have undergone substantial development, yet marketers have been slow to adopt these techniques to address missing data. This study familiarises marketers with the available maximum likelihood estimators, reviews missing data theory and research, and presents a structural equation modelling simulation study to demonstrate the advantages of maximum likelihood estimation versus other techniques. Results indicate that the full information maximum likelihood and expectation-maximisation outperform traditional techniques with respect to parameter estimate bias, model fit and parameter estimate efficiency. Marketers should be aware of the potential impact of missing data assumptions and decrease their reliance on ad hoc methods in favour of maximum likelihood estimators.</description><identifier>ISSN: 0967-3237</identifier><identifier>EISSN: 1479-1862</identifier><language>eng</language><publisher>London: Palgrave Macmillan</publisher><subject>Algorithms ; Bias ; Datasets ; Decision making models ; Efficiency ; Estimates ; Expected values ; Marketing ; Mathematical models ; Maximum likelihood method ; Methods ; Missing data ; Sampling error ; Simulation ; Software ; Statistical analysis ; Structural equation modeling ; Studies ; Variables</subject><ispartof>Journal of targeting, measurement and analysis for marketing, 2002-09, Vol.11 (1), p.81</ispartof><rights>Copyright Henry Stewart Conferences and Publications Ltd. Sep 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Cara Lee Okleshen Peters</creatorcontrib><creatorcontrib>Enders, Craig</creatorcontrib><title>A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms</title><title>Journal of targeting, measurement and analysis for marketing</title><description>Maximum likelihood algorithms have undergone substantial development, yet marketers have been slow to adopt these techniques to address missing data. This study familiarises marketers with the available maximum likelihood estimators, reviews missing data theory and research, and presents a structural equation modelling simulation study to demonstrate the advantages of maximum likelihood estimation versus other techniques. Results indicate that the full information maximum likelihood and expectation-maximisation outperform traditional techniques with respect to parameter estimate bias, model fit and parameter estimate efficiency. Marketers should be aware of the potential impact of missing data assumptions and decrease their reliance on ad hoc methods in favour of maximum likelihood estimators.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Datasets</subject><subject>Decision making models</subject><subject>Efficiency</subject><subject>Estimates</subject><subject>Expected values</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>Methods</subject><subject>Missing data</subject><subject>Sampling error</subject><subject>Simulation</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Structural equation modeling</subject><subject>Studies</subject><subject>Variables</subject><issn>0967-3237</issn><issn>1479-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzs1OwzAQBGALgdQAfYcV90hJ3OaHG0IgLty4V1azabbY3nTXlvr4lJ8H4DTSzHeYK1PUm24o675trk1RDW1X2sZ2K3Oreqyqpt5s-8Kcn2ARCigwsUCaEVATBZeII_AEmiTvUxbnAU_5tw48oleg-OMXQcW4x28dSJXiAUaX3CO8uzOFHMDTJ3qamUdw_sBCaQ56b24m5xXXf3lnHl5fPp7fykX4lC8ndkfOEi_TrrHt0PbD1tp_oS9l1E9p</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Cara Lee Okleshen Peters</creator><creator>Enders, Craig</creator><general>Palgrave Macmillan</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20020901</creationdate><title>A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms</title><author>Cara Lee Okleshen Peters ; Enders, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2369689533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Datasets</topic><topic>Decision making models</topic><topic>Efficiency</topic><topic>Estimates</topic><topic>Expected values</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>Methods</topic><topic>Missing data</topic><topic>Sampling error</topic><topic>Simulation</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Structural equation modeling</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cara Lee Okleshen Peters</creatorcontrib><creatorcontrib>Enders, Craig</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of targeting, measurement and analysis for marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cara Lee Okleshen Peters</au><au>Enders, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms</atitle><jtitle>Journal of targeting, measurement and analysis for marketing</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>11</volume><issue>1</issue><spage>81</spage><pages>81-</pages><issn>0967-3237</issn><eissn>1479-1862</eissn><abstract>Maximum likelihood algorithms have undergone substantial development, yet marketers have been slow to adopt these techniques to address missing data. This study familiarises marketers with the available maximum likelihood estimators, reviews missing data theory and research, and presents a structural equation modelling simulation study to demonstrate the advantages of maximum likelihood estimation versus other techniques. Results indicate that the full information maximum likelihood and expectation-maximisation outperform traditional techniques with respect to parameter estimate bias, model fit and parameter estimate efficiency. Marketers should be aware of the potential impact of missing data assumptions and decrease their reliance on ad hoc methods in favour of maximum likelihood estimators.</abstract><cop>London</cop><pub>Palgrave Macmillan</pub></addata></record>
fulltext fulltext
identifier ISSN: 0967-3237
ispartof Journal of targeting, measurement and analysis for marketing, 2002-09, Vol.11 (1), p.81
issn 0967-3237
1479-1862
language eng
recordid cdi_proquest_journals_236968953
source Business Source Complete
subjects Algorithms
Bias
Datasets
Decision making models
Efficiency
Estimates
Expected values
Marketing
Mathematical models
Maximum likelihood method
Methods
Missing data
Sampling error
Simulation
Software
Statistical analysis
Structural equation modeling
Studies
Variables
title A primer for the estimation of structural equation models in the presence of missing data: Maximum likelihood algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20primer%20for%20the%20estimation%20of%20structural%20equation%20models%20in%20the%20presence%20of%20missing%20data:%20Maximum%20likelihood%20algorithms&rft.jtitle=Journal%20of%20targeting,%20measurement%20and%20analysis%20for%20marketing&rft.au=Cara%20Lee%20Okleshen%20Peters&rft.date=2002-09-01&rft.volume=11&rft.issue=1&rft.spage=81&rft.pages=81-&rft.issn=0967-3237&rft.eissn=1479-1862&rft_id=info:doi/&rft_dat=%3Cproquest%3E183785421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236968953&rft_id=info:pmid/&rfr_iscdi=true