Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker

Recently, Constant Separating Vector (CSV) mixing model has been proposed for the Blind Source Extraction (BSE) of moving sources. In this paper, we experimentally verify the applicability of CSV in the blind extraction of a moving speaker and propose a new BSE method derived by modifying the auxili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Janský, Jakub, Koldovský, Zbyněk, Málek, Jiří, Kounovský, Tomáš, Čmejla, Jaroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Janský, Jakub
Koldovský, Zbyněk
Málek, Jiří
Kounovský, Tomáš
Čmejla, Jaroslav
description Recently, Constant Separating Vector (CSV) mixing model has been proposed for the Blind Source Extraction (BSE) of moving sources. In this paper, we experimentally verify the applicability of CSV in the blind extraction of a moving speaker and propose a new BSE method derived by modifying the auxiliary function-based algorithm for Independent Vector Analysis. Also, a piloted variant is proposed for the method with partially controllable global convergence. The methods are verified under reverberant and noisy conditions using {\color{red} simulated as well as real-world acoustic conditions}. They are also verified within the CHiME-4 speech separation and recognition challenge. The experiments corroborate the applicability of CSV as well as the improved convergence of the proposed algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2369674998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369674998</sourcerecordid><originalsourceid>FETCH-proquest_journals_23696749983</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5Hf7QWbDN16OGEkSnusvQabO12V7Cvn0RfYBOz-H5LZCHCdkFWYTxCvnGjGEY4iTFcUw8dCzczAWn-gW1k63lSgYlNayDQgxKc3u9Q680lILLDqrZavpFoHqgcFJPLgc4T4zemN6gZU-FYf6va7Stq8v-EExaPRwzthmV0_KzGkySPEmjPM_If-oN5dc84Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369674998</pqid></control><display><type>article</type><title>Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker</title><source>Free E- Journals</source><creator>Janský, Jakub ; Koldovský, Zbyněk ; Málek, Jiří ; Kounovský, Tomáš ; Čmejla, Jaroslav</creator><creatorcontrib>Janský, Jakub ; Koldovský, Zbyněk ; Málek, Jiří ; Kounovský, Tomáš ; Čmejla, Jaroslav</creatorcontrib><description>Recently, Constant Separating Vector (CSV) mixing model has been proposed for the Blind Source Extraction (BSE) of moving sources. In this paper, we experimentally verify the applicability of CSV in the blind extraction of a moving speaker and propose a new BSE method derived by modifying the auxiliary function-based algorithm for Independent Vector Analysis. Also, a piloted variant is proposed for the method with partially controllable global convergence. The methods are verified under reverberant and noisy conditions using {\color{red} simulated as well as real-world acoustic conditions}. They are also verified within the CHiME-4 speech separation and recognition challenge. The experiments corroborate the applicability of CSV as well as the improved convergence of the proposed algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acoustic noise ; Algorithms ; Control methods ; Convergence ; Microphones ; Speech recognition ; Vector analysis</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Janský, Jakub</creatorcontrib><creatorcontrib>Koldovský, Zbyněk</creatorcontrib><creatorcontrib>Málek, Jiří</creatorcontrib><creatorcontrib>Kounovský, Tomáš</creatorcontrib><creatorcontrib>Čmejla, Jaroslav</creatorcontrib><title>Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker</title><title>arXiv.org</title><description>Recently, Constant Separating Vector (CSV) mixing model has been proposed for the Blind Source Extraction (BSE) of moving sources. In this paper, we experimentally verify the applicability of CSV in the blind extraction of a moving speaker and propose a new BSE method derived by modifying the auxiliary function-based algorithm for Independent Vector Analysis. Also, a piloted variant is proposed for the method with partially controllable global convergence. The methods are verified under reverberant and noisy conditions using {\color{red} simulated as well as real-world acoustic conditions}. They are also verified within the CHiME-4 speech separation and recognition challenge. The experiments corroborate the applicability of CSV as well as the improved convergence of the proposed algorithms.</description><subject>Acoustic noise</subject><subject>Algorithms</subject><subject>Control methods</subject><subject>Convergence</subject><subject>Microphones</subject><subject>Speech recognition</subject><subject>Vector analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0LgjAcgPERBEn5Hf7QWbDN16OGEkSnusvQabO12V7Cvn0RfYBOz-H5LZCHCdkFWYTxCvnGjGEY4iTFcUw8dCzczAWn-gW1k63lSgYlNayDQgxKc3u9Q680lILLDqrZavpFoHqgcFJPLgc4T4zemN6gZU-FYf6va7Stq8v-EExaPRwzthmV0_KzGkySPEmjPM_If-oN5dc84Q</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Janský, Jakub</creator><creator>Koldovský, Zbyněk</creator><creator>Málek, Jiří</creator><creator>Kounovský, Tomáš</creator><creator>Čmejla, Jaroslav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210205</creationdate><title>Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker</title><author>Janský, Jakub ; Koldovský, Zbyněk ; Málek, Jiří ; Kounovský, Tomáš ; Čmejla, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23696749983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic noise</topic><topic>Algorithms</topic><topic>Control methods</topic><topic>Convergence</topic><topic>Microphones</topic><topic>Speech recognition</topic><topic>Vector analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Janský, Jakub</creatorcontrib><creatorcontrib>Koldovský, Zbyněk</creatorcontrib><creatorcontrib>Málek, Jiří</creatorcontrib><creatorcontrib>Kounovský, Tomáš</creatorcontrib><creatorcontrib>Čmejla, Jaroslav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janský, Jakub</au><au>Koldovský, Zbyněk</au><au>Málek, Jiří</au><au>Kounovský, Tomáš</au><au>Čmejla, Jaroslav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker</atitle><jtitle>arXiv.org</jtitle><date>2021-02-05</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Recently, Constant Separating Vector (CSV) mixing model has been proposed for the Blind Source Extraction (BSE) of moving sources. In this paper, we experimentally verify the applicability of CSV in the blind extraction of a moving speaker and propose a new BSE method derived by modifying the auxiliary function-based algorithm for Independent Vector Analysis. Also, a piloted variant is proposed for the method with partially controllable global convergence. The methods are verified under reverberant and noisy conditions using {\color{red} simulated as well as real-world acoustic conditions}. They are also verified within the CHiME-4 speech separation and recognition challenge. The experiments corroborate the applicability of CSV as well as the improved convergence of the proposed algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2369674998
source Free E- Journals
subjects Acoustic noise
Algorithms
Control methods
Convergence
Microphones
Speech recognition
Vector analysis
title Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Auxiliary%20Function-Based%20Algorithm%20for%20Blind%20Extraction%20of%20a%20Moving%20Speaker&rft.jtitle=arXiv.org&rft.au=Jansk%C3%BD,%20Jakub&rft.date=2021-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2369674998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369674998&rft_id=info:pmid/&rfr_iscdi=true