Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys

In this study, the effect of anodization and electroless Ni-P plating on the fatigue strength of commercial A5052-H14 and A2017-T4 aluminum alloys was investigated. The coated aluminum alloys were tested using a rotary bending fatigue testing machine. Anodization led to a slight increase in the fati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Japan Institute of Metals and Materials 2020/03/01, Vol.84(3), pp.74-79
Hauptverfasser: Kido, Ryota, Kuwano, Ryoichi, Hino, Makoto, Murayama, Keisuke, Kurosaka, Seigo, Oda, Yukinori, Horikawa, Keitaro, Kanadani, Teruto
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 3
container_start_page 74
container_title Journal of the Japan Institute of Metals and Materials
container_volume 84
creator Kido, Ryota
Kuwano, Ryoichi
Hino, Makoto
Murayama, Keisuke
Kurosaka, Seigo
Oda, Yukinori
Horikawa, Keitaro
Kanadani, Teruto
description In this study, the effect of anodization and electroless Ni-P plating on the fatigue strength of commercial A5052-H14 and A2017-T4 aluminum alloys was investigated. The coated aluminum alloys were tested using a rotary bending fatigue testing machine. Anodization led to a slight increase in the fatigue strength of the A2017-T4 alloy of approximately 10% because of the suppression of the generation of fatigue crack, and anodization with a 5-µm thickness for A5052-H14 also led to a slight increase in the fatigue strength. However, anodization with a 20-µm thickness for A5052-H14 led to reduced fatigue strength because of the pits that formed in the film. In addition, electroless Ni-P plating drastically improved the fatigue strength of the A5052-H14 alloy by suppressing the generation of fatigue crack.It also improved the fatigue strength of the A2017-T4 alloy in the high-stress region. However, the fatigue strength in the low-stress region was the same as that of the non-coated specimens.This fatigue strength should have originated from the hydrogen embrittlement by the hydrogen introduced into the specimen during the plating.
doi_str_mv 10.2320/jinstmet.JB201904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369575183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369575183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-670a3f63b40263f316e3badfeb08b9aa266f4248ecd5d0c7a17e58019b6dd85d3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEhX0B3CzxDll_YjjHEPVB6gSSJQLF8tx7JIqTYrtHPrvSVVaLrt7mG9GOwg9EJhQRuFpW7ch7mycvD5TIDnwKzQiUkIihnGNRgCUJFxm4haNQ6hLAMgFEZCP0NfMOWtiwJ3DH7132li89lYPdm3EXYvnOtab3uJ33-2tj4ejsEghpcmScKzbChdDZpasOS6afle3_W44mu4Q7tGN002w4799hz7ns_V0mazeFi_TYpUYJiEmIgPNnGAlByqYY0RYVurK2RJkmWtNhXCccmlNlVZgMk0ym8rhzVJUlUwrdoceT7573_30NkS17XrfDpGKMpGnWUokG1TkpDK-C8Fbp_a-3ml_UATUsUV1blGdWxyYxYnZhqg39kJoH2vT2H9CcsWO40xeFOZbe2Vb9gsDcn7H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369575183</pqid></control><display><type>article</type><title>Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kido, Ryota ; Kuwano, Ryoichi ; Hino, Makoto ; Murayama, Keisuke ; Kurosaka, Seigo ; Oda, Yukinori ; Horikawa, Keitaro ; Kanadani, Teruto</creator><creatorcontrib>Kido, Ryota ; Kuwano, Ryoichi ; Hino, Makoto ; Murayama, Keisuke ; Kurosaka, Seigo ; Oda, Yukinori ; Horikawa, Keitaro ; Kanadani, Teruto</creatorcontrib><description>In this study, the effect of anodization and electroless Ni-P plating on the fatigue strength of commercial A5052-H14 and A2017-T4 aluminum alloys was investigated. The coated aluminum alloys were tested using a rotary bending fatigue testing machine. Anodization led to a slight increase in the fatigue strength of the A2017-T4 alloy of approximately 10% because of the suppression of the generation of fatigue crack, and anodization with a 5-µm thickness for A5052-H14 also led to a slight increase in the fatigue strength. However, anodization with a 20-µm thickness for A5052-H14 led to reduced fatigue strength because of the pits that formed in the film. In addition, electroless Ni-P plating drastically improved the fatigue strength of the A5052-H14 alloy by suppressing the generation of fatigue crack.It also improved the fatigue strength of the A2017-T4 alloy in the high-stress region. However, the fatigue strength in the low-stress region was the same as that of the non-coated specimens.This fatigue strength should have originated from the hydrogen embrittlement by the hydrogen introduced into the specimen during the plating.</description><identifier>ISSN: 0021-4876</identifier><identifier>EISSN: 1880-6880</identifier><identifier>DOI: 10.2320/jinstmet.JB201904</identifier><language>eng ; jpn</language><publisher>Sendai: The Japan Institute of Metals and Materials</publisher><subject>Alloys ; aluminum alloy ; Aluminum alloys ; Aluminum base alloys ; Anodizing ; Bend tests ; Bending fatigue ; Bending machines ; Coating ; Crack propagation ; Electroless plating ; Fatigue failure ; fatigue property ; Fatigue strength ; Fatigue testing machines ; Fatigue tests ; Heat treating ; Hydrogen ; Hydrogen embrittlement ; Metal fatigue ; Pits ; Roll bending ; Surface treatment ; Thickness</subject><ispartof>Journal of the Japan Institute of Metals and Materials, 2020/03/01, Vol.84(3), pp.74-79</ispartof><rights>2020 The Japan Institute of Metals and Materials</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-670a3f63b40263f316e3badfeb08b9aa266f4248ecd5d0c7a17e58019b6dd85d3</citedby><cites>FETCH-LOGICAL-c380t-670a3f63b40263f316e3badfeb08b9aa266f4248ecd5d0c7a17e58019b6dd85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1877,27905,27906</link.rule.ids></links><search><creatorcontrib>Kido, Ryota</creatorcontrib><creatorcontrib>Kuwano, Ryoichi</creatorcontrib><creatorcontrib>Hino, Makoto</creatorcontrib><creatorcontrib>Murayama, Keisuke</creatorcontrib><creatorcontrib>Kurosaka, Seigo</creatorcontrib><creatorcontrib>Oda, Yukinori</creatorcontrib><creatorcontrib>Horikawa, Keitaro</creatorcontrib><creatorcontrib>Kanadani, Teruto</creatorcontrib><title>Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys</title><title>Journal of the Japan Institute of Metals and Materials</title><addtitle>J. Japan Inst. Metals and Materials</addtitle><description>In this study, the effect of anodization and electroless Ni-P plating on the fatigue strength of commercial A5052-H14 and A2017-T4 aluminum alloys was investigated. The coated aluminum alloys were tested using a rotary bending fatigue testing machine. Anodization led to a slight increase in the fatigue strength of the A2017-T4 alloy of approximately 10% because of the suppression of the generation of fatigue crack, and anodization with a 5-µm thickness for A5052-H14 also led to a slight increase in the fatigue strength. However, anodization with a 20-µm thickness for A5052-H14 led to reduced fatigue strength because of the pits that formed in the film. In addition, electroless Ni-P plating drastically improved the fatigue strength of the A5052-H14 alloy by suppressing the generation of fatigue crack.It also improved the fatigue strength of the A2017-T4 alloy in the high-stress region. However, the fatigue strength in the low-stress region was the same as that of the non-coated specimens.This fatigue strength should have originated from the hydrogen embrittlement by the hydrogen introduced into the specimen during the plating.</description><subject>Alloys</subject><subject>aluminum alloy</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing</subject><subject>Bend tests</subject><subject>Bending fatigue</subject><subject>Bending machines</subject><subject>Coating</subject><subject>Crack propagation</subject><subject>Electroless plating</subject><subject>Fatigue failure</subject><subject>fatigue property</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Heat treating</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Metal fatigue</subject><subject>Pits</subject><subject>Roll bending</subject><subject>Surface treatment</subject><subject>Thickness</subject><issn>0021-4876</issn><issn>1880-6880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EEhX0B3CzxDll_YjjHEPVB6gSSJQLF8tx7JIqTYrtHPrvSVVaLrt7mG9GOwg9EJhQRuFpW7ch7mycvD5TIDnwKzQiUkIihnGNRgCUJFxm4haNQ6hLAMgFEZCP0NfMOWtiwJ3DH7132li89lYPdm3EXYvnOtab3uJ33-2tj4ejsEghpcmScKzbChdDZpasOS6afle3_W44mu4Q7tGN002w4799hz7ns_V0mazeFi_TYpUYJiEmIgPNnGAlByqYY0RYVurK2RJkmWtNhXCccmlNlVZgMk0ym8rhzVJUlUwrdoceT7573_30NkS17XrfDpGKMpGnWUokG1TkpDK-C8Fbp_a-3ml_UATUsUV1blGdWxyYxYnZhqg39kJoH2vT2H9CcsWO40xeFOZbe2Vb9gsDcn7H</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kido, Ryota</creator><creator>Kuwano, Ryoichi</creator><creator>Hino, Makoto</creator><creator>Murayama, Keisuke</creator><creator>Kurosaka, Seigo</creator><creator>Oda, Yukinori</creator><creator>Horikawa, Keitaro</creator><creator>Kanadani, Teruto</creator><general>The Japan Institute of Metals and Materials</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200101</creationdate><title>Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys</title><author>Kido, Ryota ; Kuwano, Ryoichi ; Hino, Makoto ; Murayama, Keisuke ; Kurosaka, Seigo ; Oda, Yukinori ; Horikawa, Keitaro ; Kanadani, Teruto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-670a3f63b40263f316e3badfeb08b9aa266f4248ecd5d0c7a17e58019b6dd85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>aluminum alloy</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing</topic><topic>Bend tests</topic><topic>Bending fatigue</topic><topic>Bending machines</topic><topic>Coating</topic><topic>Crack propagation</topic><topic>Electroless plating</topic><topic>Fatigue failure</topic><topic>fatigue property</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Heat treating</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Metal fatigue</topic><topic>Pits</topic><topic>Roll bending</topic><topic>Surface treatment</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kido, Ryota</creatorcontrib><creatorcontrib>Kuwano, Ryoichi</creatorcontrib><creatorcontrib>Hino, Makoto</creatorcontrib><creatorcontrib>Murayama, Keisuke</creatorcontrib><creatorcontrib>Kurosaka, Seigo</creatorcontrib><creatorcontrib>Oda, Yukinori</creatorcontrib><creatorcontrib>Horikawa, Keitaro</creatorcontrib><creatorcontrib>Kanadani, Teruto</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Japan Institute of Metals and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kido, Ryota</au><au>Kuwano, Ryoichi</au><au>Hino, Makoto</au><au>Murayama, Keisuke</au><au>Kurosaka, Seigo</au><au>Oda, Yukinori</au><au>Horikawa, Keitaro</au><au>Kanadani, Teruto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys</atitle><jtitle>Journal of the Japan Institute of Metals and Materials</jtitle><addtitle>J. Japan Inst. Metals and Materials</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>84</volume><issue>3</issue><spage>74</spage><epage>79</epage><pages>74-79</pages><issn>0021-4876</issn><eissn>1880-6880</eissn><abstract>In this study, the effect of anodization and electroless Ni-P plating on the fatigue strength of commercial A5052-H14 and A2017-T4 aluminum alloys was investigated. The coated aluminum alloys were tested using a rotary bending fatigue testing machine. Anodization led to a slight increase in the fatigue strength of the A2017-T4 alloy of approximately 10% because of the suppression of the generation of fatigue crack, and anodization with a 5-µm thickness for A5052-H14 also led to a slight increase in the fatigue strength. However, anodization with a 20-µm thickness for A5052-H14 led to reduced fatigue strength because of the pits that formed in the film. In addition, electroless Ni-P plating drastically improved the fatigue strength of the A5052-H14 alloy by suppressing the generation of fatigue crack.It also improved the fatigue strength of the A2017-T4 alloy in the high-stress region. However, the fatigue strength in the low-stress region was the same as that of the non-coated specimens.This fatigue strength should have originated from the hydrogen embrittlement by the hydrogen introduced into the specimen during the plating.</abstract><cop>Sendai</cop><pub>The Japan Institute of Metals and Materials</pub><doi>10.2320/jinstmet.JB201904</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4876
ispartof Journal of the Japan Institute of Metals and Materials, 2020/03/01, Vol.84(3), pp.74-79
issn 0021-4876
1880-6880
language eng ; jpn
recordid cdi_proquest_journals_2369575183
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Alloys
aluminum alloy
Aluminum alloys
Aluminum base alloys
Anodizing
Bend tests
Bending fatigue
Bending machines
Coating
Crack propagation
Electroless plating
Fatigue failure
fatigue property
Fatigue strength
Fatigue testing machines
Fatigue tests
Heat treating
Hydrogen
Hydrogen embrittlement
Metal fatigue
Pits
Roll bending
Surface treatment
Thickness
title Effects of Surface Treatment on Fatigue Property of A5052-H14 and A2017-T4 Aluminum Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Surface%20Treatment%20on%20Fatigue%20Property%20of%20A5052-H14%20and%20A2017-T4%20Aluminum%20Alloys&rft.jtitle=Journal%20of%20the%20Japan%20Institute%20of%20Metals%20and%20Materials&rft.au=Kido,%20Ryota&rft.date=2020-01-01&rft.volume=84&rft.issue=3&rft.spage=74&rft.epage=79&rft.pages=74-79&rft.issn=0021-4876&rft.eissn=1880-6880&rft_id=info:doi/10.2320/jinstmet.JB201904&rft_dat=%3Cproquest_cross%3E2369575183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369575183&rft_id=info:pmid/&rfr_iscdi=true