A deep-learning based water-level measurement method from CCTV camera images
As our previous work, we have reported a method to measure the river water level by capturing water gauge images of CCTV cameras for river monitoring into a computer and collating them with one taken at the time of low water level. For this time, we examined a method of measuring the river water lev...
Gespeichert in:
Veröffentlicht in: | Journal of the Japan society of photogrammetry and remote sensing 2019, Vol.58(1), pp.28-33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | Journal of the Japan society of photogrammetry and remote sensing |
container_volume | 58 |
creator | MAEHARA, Hideaki NAGASE, Momoyo KUCHI, Michihiro SUZUKI, Toshihisa TAIRA, Kenji |
description | As our previous work, we have reported a method to measure the river water level by capturing water gauge images of CCTV cameras for river monitoring into a computer and collating them with one taken at the time of low water level. For this time, we examined a method of measuring the river water level by identifying the water border position based on the deep learning technology, targeting the non-installation sites of the water gauge. We also have estimated the effectiveness of the new method using actual river image data set. |
doi_str_mv | 10.4287/jsprs.58.28 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2369559684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369559684</sourcerecordid><originalsourceid>FETCH-LOGICAL-j834-df762eae5efd4b4ed64f8858b9251e97e296281f65c970dc22fb7d15829c6b733</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUXETBUnvyDyx4Tk32K28vQglqhYKX4nXZZN-2CflyN1X890YrXt4bZoZ5wyPkNkvXgkF-38QxxLWENYMLssgAeKJTlV2SRcpAJhKEuCarGOsyZanIGWi-ILsNdYhj0qINfd0faGkjOvppJwwz-YEt7dDGU8AO-2nG03Fw1Ieho0Wxf6OV7TBYWnf2gPGGXHnbRlz97SXZPz3ui22ye31-KTa7pAEuEudzxdCiRO9EKdAp4QEklJrJDHWOTCsGmVey0nnqKsZ8mbtMAtOVKnPOl-TuHDuG4f2EcTLNcAr9fNEwrrSUWoGYXQ9nVxOnuZwZw1wyfBkbprpq0fy-y0gw2c9g8C9URxsM9vwbi31m3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369559684</pqid></control><display><type>article</type><title>A deep-learning based water-level measurement method from CCTV camera images</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>MAEHARA, Hideaki ; NAGASE, Momoyo ; KUCHI, Michihiro ; SUZUKI, Toshihisa ; TAIRA, Kenji</creator><creatorcontrib>MAEHARA, Hideaki ; NAGASE, Momoyo ; KUCHI, Michihiro ; SUZUKI, Toshihisa ; TAIRA, Kenji</creatorcontrib><description>As our previous work, we have reported a method to measure the river water level by capturing water gauge images of CCTV cameras for river monitoring into a computer and collating them with one taken at the time of low water level. For this time, we examined a method of measuring the river water level by identifying the water border position based on the deep learning technology, targeting the non-installation sites of the water gauge. We also have estimated the effectiveness of the new method using actual river image data set.</description><identifier>ISSN: 0285-5844</identifier><identifier>EISSN: 1883-9061</identifier><identifier>DOI: 10.4287/jsprs.58.28</identifier><language>jpn</language><publisher>Tokyo: Japan Society of Photogrammetry and Remote Sensing</publisher><subject>Cameras ; Closed circuit television ; Collating ; Deep learning ; Position measurement ; Water levels</subject><ispartof>Journal of the Japan society of photogrammetry and remote sensing, 2019, Vol.58(1), pp.28-33</ispartof><rights>2019 Japan Society of Photogrammetry and Remote Sensing</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>MAEHARA, Hideaki</creatorcontrib><creatorcontrib>NAGASE, Momoyo</creatorcontrib><creatorcontrib>KUCHI, Michihiro</creatorcontrib><creatorcontrib>SUZUKI, Toshihisa</creatorcontrib><creatorcontrib>TAIRA, Kenji</creatorcontrib><title>A deep-learning based water-level measurement method from CCTV camera images</title><title>Journal of the Japan society of photogrammetry and remote sensing</title><addtitle>Journal of the Japan society of photogrammetry and remote sensing</addtitle><description>As our previous work, we have reported a method to measure the river water level by capturing water gauge images of CCTV cameras for river monitoring into a computer and collating them with one taken at the time of low water level. For this time, we examined a method of measuring the river water level by identifying the water border position based on the deep learning technology, targeting the non-installation sites of the water gauge. We also have estimated the effectiveness of the new method using actual river image data set.</description><subject>Cameras</subject><subject>Closed circuit television</subject><subject>Collating</subject><subject>Deep learning</subject><subject>Position measurement</subject><subject>Water levels</subject><issn>0285-5844</issn><issn>1883-9061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AUXETBUnvyDyx4Tk32K28vQglqhYKX4nXZZN-2CflyN1X890YrXt4bZoZ5wyPkNkvXgkF-38QxxLWENYMLssgAeKJTlV2SRcpAJhKEuCarGOsyZanIGWi-ILsNdYhj0qINfd0faGkjOvppJwwz-YEt7dDGU8AO-2nG03Fw1Ieho0Wxf6OV7TBYWnf2gPGGXHnbRlz97SXZPz3ui22ye31-KTa7pAEuEudzxdCiRO9EKdAp4QEklJrJDHWOTCsGmVey0nnqKsZ8mbtMAtOVKnPOl-TuHDuG4f2EcTLNcAr9fNEwrrSUWoGYXQ9nVxOnuZwZw1wyfBkbprpq0fy-y0gw2c9g8C9URxsM9vwbi31m3Q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>MAEHARA, Hideaki</creator><creator>NAGASE, Momoyo</creator><creator>KUCHI, Michihiro</creator><creator>SUZUKI, Toshihisa</creator><creator>TAIRA, Kenji</creator><general>Japan Society of Photogrammetry and Remote Sensing</general><general>Japan Science and Technology Agency</general><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>A deep-learning based water-level measurement method from CCTV camera images</title><author>MAEHARA, Hideaki ; NAGASE, Momoyo ; KUCHI, Michihiro ; SUZUKI, Toshihisa ; TAIRA, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j834-df762eae5efd4b4ed64f8858b9251e97e296281f65c970dc22fb7d15829c6b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Closed circuit television</topic><topic>Collating</topic><topic>Deep learning</topic><topic>Position measurement</topic><topic>Water levels</topic><toplevel>online_resources</toplevel><creatorcontrib>MAEHARA, Hideaki</creatorcontrib><creatorcontrib>NAGASE, Momoyo</creatorcontrib><creatorcontrib>KUCHI, Michihiro</creatorcontrib><creatorcontrib>SUZUKI, Toshihisa</creatorcontrib><creatorcontrib>TAIRA, Kenji</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Japan society of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAEHARA, Hideaki</au><au>NAGASE, Momoyo</au><au>KUCHI, Michihiro</au><au>SUZUKI, Toshihisa</au><au>TAIRA, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep-learning based water-level measurement method from CCTV camera images</atitle><jtitle>Journal of the Japan society of photogrammetry and remote sensing</jtitle><addtitle>Journal of the Japan society of photogrammetry and remote sensing</addtitle><date>2019</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0285-5844</issn><eissn>1883-9061</eissn><abstract>As our previous work, we have reported a method to measure the river water level by capturing water gauge images of CCTV cameras for river monitoring into a computer and collating them with one taken at the time of low water level. For this time, we examined a method of measuring the river water level by identifying the water border position based on the deep learning technology, targeting the non-installation sites of the water gauge. We also have estimated the effectiveness of the new method using actual river image data set.</abstract><cop>Tokyo</cop><pub>Japan Society of Photogrammetry and Remote Sensing</pub><doi>10.4287/jsprs.58.28</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0285-5844 |
ispartof | Journal of the Japan society of photogrammetry and remote sensing, 2019, Vol.58(1), pp.28-33 |
issn | 0285-5844 1883-9061 |
language | jpn |
recordid | cdi_proquest_journals_2369559684 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cameras Closed circuit television Collating Deep learning Position measurement Water levels |
title | A deep-learning based water-level measurement method from CCTV camera images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep-learning%20based%20water-level%20measurement%20method%20from%20CCTV%20camera%20images&rft.jtitle=Journal%20of%20the%20Japan%20society%20of%20photogrammetry%20and%20remote%20sensing&rft.au=MAEHARA,%20Hideaki&rft.date=2019&rft.volume=58&rft.issue=1&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0285-5844&rft.eissn=1883-9061&rft_id=info:doi/10.4287/jsprs.58.28&rft_dat=%3Cproquest_jstag%3E2369559684%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369559684&rft_id=info:pmid/&rfr_iscdi=true |