Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy

  A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Magnetics Society of Japan 2020/03/01, Vol.44(2), pp.40-44
Hauptverfasser: Ya, X., Imai, R., Tanaka, T., Matsuyama, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 2
container_start_page 40
container_title Journal of the Magnetics Society of Japan
container_volume 44
creator Ya, X.
Imai, R.
Tanaka, T.
Matsuyama, K.
description   A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.
doi_str_mv 10.3379/msjmag.2003R004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369534944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369534944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</originalsourceid><addsrcrecordid>eNpNkEtPAjEURidGExFdu23ieqDTdjrMkhBQElQCPpZN6dyBEmjHdpCw9o9b5BE3vU2-79ybnCi6T3CL0ixvr_1yLectgjGdYMwuokbS6ZCY5JRcnv-EXUc33i8x5hnt8Eb086yVswE0UGuFpnq9WclaW4NsiT7sqpZziIem2Cgo0LTSBn3Kb0AT8NZIowCNna3A1Ro8CuEA3L9tL9LYrXYh2up6gcbgKjCFVuGEQ12jva0DvbuNrkq58nB3nM3ofdB_6z3Fo9fHYa87ihXFGYspL_KUY54Cn2EJGZ9BynIiScpLRjkQkuGizDIMgGeJ6uRZwkBSLnkpcSJntBk9HPZWzn5twNdiaTfOhJOCUJ6nlOWMhVb70ApevHdQisrptXQ7kWCxNy0OpsXJdCD6B2Lp97rOfRm0qBWc-owJ8vccuXOuFtIJMPQXNTWODg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369534944</pqid></control><display><type>article</type><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</creator><creatorcontrib>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</creatorcontrib><description>  A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</description><identifier>ISSN: 1882-2924</identifier><identifier>EISSN: 1882-2932</identifier><identifier>DOI: 10.3379/msjmag.2003R004</identifier><language>eng</language><publisher>Tokyo: The Magnetics Society of Japan</publisher><subject>Anisotropy ; Computer simulation ; Downsizing ; Electric potential ; Excitation ; Ferromagnetic resonance ; Ferromagnetism ; magnetic anisotropy ; Magnons ; micromagnetic simulation ; Nanowires ; Power consumption ; Resonance ; Size effects ; Spatial resolution ; spin wave ; Voltage</subject><ispartof>Journal of the Magnetics Society of Japan, 2020/03/01, Vol.44(2), pp.40-44</ispartof><rights>2020 The Magnetics Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Ya, X.</creatorcontrib><creatorcontrib>Imai, R.</creatorcontrib><creatorcontrib>Tanaka, T.</creatorcontrib><creatorcontrib>Matsuyama, K.</creatorcontrib><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><title>Journal of the Magnetics Society of Japan</title><addtitle>J. Magn. Soc. Jpn.</addtitle><description>  A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Downsizing</subject><subject>Electric potential</subject><subject>Excitation</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>magnetic anisotropy</subject><subject>Magnons</subject><subject>micromagnetic simulation</subject><subject>Nanowires</subject><subject>Power consumption</subject><subject>Resonance</subject><subject>Size effects</subject><subject>Spatial resolution</subject><subject>spin wave</subject><subject>Voltage</subject><issn>1882-2924</issn><issn>1882-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPAjEURidGExFdu23ieqDTdjrMkhBQElQCPpZN6dyBEmjHdpCw9o9b5BE3vU2-79ybnCi6T3CL0ixvr_1yLectgjGdYMwuokbS6ZCY5JRcnv-EXUc33i8x5hnt8Eb086yVswE0UGuFpnq9WclaW4NsiT7sqpZziIem2Cgo0LTSBn3Kb0AT8NZIowCNna3A1Ro8CuEA3L9tL9LYrXYh2up6gcbgKjCFVuGEQ12jva0DvbuNrkq58nB3nM3ofdB_6z3Fo9fHYa87ihXFGYspL_KUY54Cn2EJGZ9BynIiScpLRjkQkuGizDIMgGeJ6uRZwkBSLnkpcSJntBk9HPZWzn5twNdiaTfOhJOCUJ6nlOWMhVb70ApevHdQisrptXQ7kWCxNy0OpsXJdCD6B2Lp97rOfRm0qBWc-owJ8vccuXOuFtIJMPQXNTWODg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ya, X.</creator><creator>Imai, R.</creator><creator>Tanaka, T.</creator><creator>Matsuyama, K.</creator><general>The Magnetics Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200301</creationdate><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><author>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Downsizing</topic><topic>Electric potential</topic><topic>Excitation</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>magnetic anisotropy</topic><topic>Magnons</topic><topic>micromagnetic simulation</topic><topic>Nanowires</topic><topic>Power consumption</topic><topic>Resonance</topic><topic>Size effects</topic><topic>Spatial resolution</topic><topic>spin wave</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya, X.</creatorcontrib><creatorcontrib>Imai, R.</creatorcontrib><creatorcontrib>Tanaka, T.</creatorcontrib><creatorcontrib>Matsuyama, K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Magnetics Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ya, X.</au><au>Imai, R.</au><au>Tanaka, T.</au><au>Matsuyama, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</atitle><jtitle>Journal of the Magnetics Society of Japan</jtitle><addtitle>J. Magn. Soc. Jpn.</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>44</volume><issue>2</issue><spage>40</spage><epage>44</epage><pages>40-44</pages><issn>1882-2924</issn><eissn>1882-2932</eissn><abstract>  A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</abstract><cop>Tokyo</cop><pub>The Magnetics Society of Japan</pub><doi>10.3379/msjmag.2003R004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-2924
ispartof Journal of the Magnetics Society of Japan, 2020/03/01, Vol.44(2), pp.40-44
issn 1882-2924
1882-2932
language eng
recordid cdi_proquest_journals_2369534944
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects Anisotropy
Computer simulation
Downsizing
Electric potential
Excitation
Ferromagnetic resonance
Ferromagnetism
magnetic anisotropy
Magnons
micromagnetic simulation
Nanowires
Power consumption
Resonance
Size effects
Spatial resolution
spin wave
Voltage
title Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetic%20Simulation%20of%20Voltage-Induced%20Spin%20Wave%20Resonance%20Properties%20in%20Ferromagnetic%20Nanowires%20with%20Perpendicular%20Anisotropy&rft.jtitle=Journal%20of%20the%20Magnetics%20Society%20of%20Japan&rft.au=Ya,%20X.&rft.date=2020-03-01&rft.volume=44&rft.issue=2&rft.spage=40&rft.epage=44&rft.pages=40-44&rft.issn=1882-2924&rft.eissn=1882-2932&rft_id=info:doi/10.3379/msjmag.2003R004&rft_dat=%3Cproquest_cross%3E2369534944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369534944&rft_id=info:pmid/&rfr_iscdi=true