Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy
A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the...
Gespeichert in:
Veröffentlicht in: | Journal of the Magnetics Society of Japan 2020/03/01, Vol.44(2), pp.40-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 2 |
container_start_page | 40 |
container_title | Journal of the Magnetics Society of Japan |
container_volume | 44 |
creator | Ya, X. Imai, R. Tanaka, T. Matsuyama, K. |
description | A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm. |
doi_str_mv | 10.3379/msjmag.2003R004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369534944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369534944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</originalsourceid><addsrcrecordid>eNpNkEtPAjEURidGExFdu23ieqDTdjrMkhBQElQCPpZN6dyBEmjHdpCw9o9b5BE3vU2-79ybnCi6T3CL0ixvr_1yLectgjGdYMwuokbS6ZCY5JRcnv-EXUc33i8x5hnt8Eb086yVswE0UGuFpnq9WclaW4NsiT7sqpZziIem2Cgo0LTSBn3Kb0AT8NZIowCNna3A1Ro8CuEA3L9tL9LYrXYh2up6gcbgKjCFVuGEQ12jva0DvbuNrkq58nB3nM3ofdB_6z3Fo9fHYa87ihXFGYspL_KUY54Cn2EJGZ9BynIiScpLRjkQkuGizDIMgGeJ6uRZwkBSLnkpcSJntBk9HPZWzn5twNdiaTfOhJOCUJ6nlOWMhVb70ApevHdQisrptXQ7kWCxNy0OpsXJdCD6B2Lp97rOfRm0qBWc-owJ8vccuXOuFtIJMPQXNTWODg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369534944</pqid></control><display><type>article</type><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</creator><creatorcontrib>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</creatorcontrib><description> A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</description><identifier>ISSN: 1882-2924</identifier><identifier>EISSN: 1882-2932</identifier><identifier>DOI: 10.3379/msjmag.2003R004</identifier><language>eng</language><publisher>Tokyo: The Magnetics Society of Japan</publisher><subject>Anisotropy ; Computer simulation ; Downsizing ; Electric potential ; Excitation ; Ferromagnetic resonance ; Ferromagnetism ; magnetic anisotropy ; Magnons ; micromagnetic simulation ; Nanowires ; Power consumption ; Resonance ; Size effects ; Spatial resolution ; spin wave ; Voltage</subject><ispartof>Journal of the Magnetics Society of Japan, 2020/03/01, Vol.44(2), pp.40-44</ispartof><rights>2020 The Magnetics Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Ya, X.</creatorcontrib><creatorcontrib>Imai, R.</creatorcontrib><creatorcontrib>Tanaka, T.</creatorcontrib><creatorcontrib>Matsuyama, K.</creatorcontrib><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><title>Journal of the Magnetics Society of Japan</title><addtitle>J. Magn. Soc. Jpn.</addtitle><description> A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Downsizing</subject><subject>Electric potential</subject><subject>Excitation</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>magnetic anisotropy</subject><subject>Magnons</subject><subject>micromagnetic simulation</subject><subject>Nanowires</subject><subject>Power consumption</subject><subject>Resonance</subject><subject>Size effects</subject><subject>Spatial resolution</subject><subject>spin wave</subject><subject>Voltage</subject><issn>1882-2924</issn><issn>1882-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPAjEURidGExFdu23ieqDTdjrMkhBQElQCPpZN6dyBEmjHdpCw9o9b5BE3vU2-79ybnCi6T3CL0ixvr_1yLectgjGdYMwuokbS6ZCY5JRcnv-EXUc33i8x5hnt8Eb086yVswE0UGuFpnq9WclaW4NsiT7sqpZziIem2Cgo0LTSBn3Kb0AT8NZIowCNna3A1Ro8CuEA3L9tL9LYrXYh2up6gcbgKjCFVuGEQ12jva0DvbuNrkq58nB3nM3ofdB_6z3Fo9fHYa87ihXFGYspL_KUY54Cn2EJGZ9BynIiScpLRjkQkuGizDIMgGeJ6uRZwkBSLnkpcSJntBk9HPZWzn5twNdiaTfOhJOCUJ6nlOWMhVb70ApevHdQisrptXQ7kWCxNy0OpsXJdCD6B2Lp97rOfRm0qBWc-owJ8vccuXOuFtIJMPQXNTWODg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ya, X.</creator><creator>Imai, R.</creator><creator>Tanaka, T.</creator><creator>Matsuyama, K.</creator><general>The Magnetics Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200301</creationdate><title>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</title><author>Ya, X. ; Imai, R. ; Tanaka, T. ; Matsuyama, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3074-36d956065e6b0ae76be5492a256f436e2270df770ee0b1c89714ea36a6fa01ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Downsizing</topic><topic>Electric potential</topic><topic>Excitation</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>magnetic anisotropy</topic><topic>Magnons</topic><topic>micromagnetic simulation</topic><topic>Nanowires</topic><topic>Power consumption</topic><topic>Resonance</topic><topic>Size effects</topic><topic>Spatial resolution</topic><topic>spin wave</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya, X.</creatorcontrib><creatorcontrib>Imai, R.</creatorcontrib><creatorcontrib>Tanaka, T.</creatorcontrib><creatorcontrib>Matsuyama, K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Magnetics Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ya, X.</au><au>Imai, R.</au><au>Tanaka, T.</au><au>Matsuyama, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy</atitle><jtitle>Journal of the Magnetics Society of Japan</jtitle><addtitle>J. Magn. Soc. Jpn.</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>44</volume><issue>2</issue><spage>40</spage><epage>44</epage><pages>40-44</pages><issn>1882-2924</issn><eissn>1882-2932</eissn><abstract> A fundamental issue in developing spin wave (SW) devices with ultralow power consumption is exploring energy-efficient excitation with nanoscale spatial resolution. We numerically studied the voltage-induced excitation of a geometrically confined standing spin wave (SSW), which is suitable for the downsizing of various SW devices. The micromagnetic configuration of the excited SSW, the resonance spectrum, and the structural size effects were investigated. In addition, a possible application to a SSW-based logic operation was demonstrated in a nanowire with lateral dimensions of 20 nm × 100 nm.</abstract><cop>Tokyo</cop><pub>The Magnetics Society of Japan</pub><doi>10.3379/msjmag.2003R004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-2924 |
ispartof | Journal of the Magnetics Society of Japan, 2020/03/01, Vol.44(2), pp.40-44 |
issn | 1882-2924 1882-2932 |
language | eng |
recordid | cdi_proquest_journals_2369534944 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | Anisotropy Computer simulation Downsizing Electric potential Excitation Ferromagnetic resonance Ferromagnetism magnetic anisotropy Magnons micromagnetic simulation Nanowires Power consumption Resonance Size effects Spatial resolution spin wave Voltage |
title | Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferromagnetic Nanowires with Perpendicular Anisotropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetic%20Simulation%20of%20Voltage-Induced%20Spin%20Wave%20Resonance%20Properties%20in%20Ferromagnetic%20Nanowires%20with%20Perpendicular%20Anisotropy&rft.jtitle=Journal%20of%20the%20Magnetics%20Society%20of%20Japan&rft.au=Ya,%20X.&rft.date=2020-03-01&rft.volume=44&rft.issue=2&rft.spage=40&rft.epage=44&rft.pages=40-44&rft.issn=1882-2924&rft.eissn=1882-2932&rft_id=info:doi/10.3379/msjmag.2003R004&rft_dat=%3Cproquest_cross%3E2369534944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369534944&rft_id=info:pmid/&rfr_iscdi=true |