Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure

This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2020/03/01, Vol.E103.D(3), pp.706-710
Hauptverfasser: SHIN, Ji-Hoon, KIM, Tae-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 3
container_start_page 706
container_title IEICE Transactions on Information and Systems
container_volume E103.D
creator SHIN, Ji-Hoon
KIM, Tae-Hwan
description This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure, if any of the input elements is +1, the result of the pooling can be produced immediately; the proposed technique eliminates such computations that are involved to obtain the remaining input elements, so as to reduce the inference time effectively. The proposed technique reduces the inference time by up to 34.11%, while maintaining the classification accuracy.
doi_str_mv 10.1587/transinf.2019EDL8165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369530579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369530579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ded17ef48e96118f442807a06e198d5f7f2ac066f82750151d198f877ff9ffa13</originalsourceid><addsrcrecordid>eNpNkElPwzAUhC0EEmX5BxwscQ74JfGSIy0tIJVFLGfLSmxwCXaxHVr49QTK0tOMnuYb6Q1CB0COgAp-nIJy0TpzlBOoxqdTAYxuoAHwkmZQMNhEA1IBywQt8m20E-OMEBA50AFyExUTvnBGB-1qjb3BQ-tUsB-6wSPv3nzbJeudavGV7sK3pIUPzxGPl_PW22TdI75US3zjffvlFzY94UvfWGP7imHr62d8l0JXpy7oPbRlVBv1_o_uoofJ-H50nk2vzy5GJ9OsLhlLWaMb4NqUQlcMQJiyzAXhijANlWio4SZXNWHMiJxTAhSa_m4E58ZUxigodtHhqnce_GunY5Iz34X-iyjzglW0IJRXfapcpergYwzayHmwLyq8SyDya1n5u6xcW7bHblfYLCb1qP8gFZKtW_0PjYEU8lQWv2at5C9cP6kgtSs-AS-2jOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369530579</pqid></control><display><type>article</type><title>Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>SHIN, Ji-Hoon ; KIM, Tae-Hwan</creator><creatorcontrib>SHIN, Ji-Hoon ; KIM, Tae-Hwan</creatorcontrib><description>This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure, if any of the input elements is +1, the result of the pooling can be produced immediately; the proposed technique eliminates such computations that are involved to obtain the remaining input elements, so as to reduce the inference time effectively. The proposed technique reduces the inference time by up to 34.11%, while maintaining the classification accuracy.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2019EDL8165</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Artificial neural networks ; binarized neural networks ; convolutional neural networks ; deep learning ; embedded systems ; Inference ; Neural networks</subject><ispartof>IEICE Transactions on Information and Systems, 2020/03/01, Vol.E103.D(3), pp.706-710</ispartof><rights>2020 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ded17ef48e96118f442807a06e198d5f7f2ac066f82750151d198f877ff9ffa13</citedby><cites>FETCH-LOGICAL-c466t-ded17ef48e96118f442807a06e198d5f7f2ac066f82750151d198f877ff9ffa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>SHIN, Ji-Hoon</creatorcontrib><creatorcontrib>KIM, Tae-Hwan</creatorcontrib><title>Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure, if any of the input elements is +1, the result of the pooling can be produced immediately; the proposed technique eliminates such computations that are involved to obtain the remaining input elements, so as to reduce the inference time effectively. The proposed technique reduces the inference time by up to 34.11%, while maintaining the classification accuracy.</description><subject>Artificial neural networks</subject><subject>binarized neural networks</subject><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>embedded systems</subject><subject>Inference</subject><subject>Neural networks</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkElPwzAUhC0EEmX5BxwscQ74JfGSIy0tIJVFLGfLSmxwCXaxHVr49QTK0tOMnuYb6Q1CB0COgAp-nIJy0TpzlBOoxqdTAYxuoAHwkmZQMNhEA1IBywQt8m20E-OMEBA50AFyExUTvnBGB-1qjb3BQ-tUsB-6wSPv3nzbJeudavGV7sK3pIUPzxGPl_PW22TdI75US3zjffvlFzY94UvfWGP7imHr62d8l0JXpy7oPbRlVBv1_o_uoofJ-H50nk2vzy5GJ9OsLhlLWaMb4NqUQlcMQJiyzAXhijANlWio4SZXNWHMiJxTAhSa_m4E58ZUxigodtHhqnce_GunY5Iz34X-iyjzglW0IJRXfapcpergYwzayHmwLyq8SyDya1n5u6xcW7bHblfYLCb1qP8gFZKtW_0PjYEU8lQWv2at5C9cP6kgtSs-AS-2jOc</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>SHIN, Ji-Hoon</creator><creator>KIM, Tae-Hwan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200301</creationdate><title>Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure</title><author>SHIN, Ji-Hoon ; KIM, Tae-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ded17ef48e96118f442807a06e198d5f7f2ac066f82750151d198f877ff9ffa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>binarized neural networks</topic><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>embedded systems</topic><topic>Inference</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHIN, Ji-Hoon</creatorcontrib><creatorcontrib>KIM, Tae-Hwan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHIN, Ji-Hoon</au><au>KIM, Tae-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>E103.D</volume><issue>3</issue><spage>706</spage><epage>710</epage><pages>706-710</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure, if any of the input elements is +1, the result of the pooling can be produced immediately; the proposed technique eliminates such computations that are involved to obtain the remaining input elements, so as to reduce the inference time effectively. The proposed technique reduces the inference time by up to 34.11%, while maintaining the classification accuracy.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2019EDL8165</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2020/03/01, Vol.E103.D(3), pp.706-710
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_2369530579
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
binarized neural networks
convolutional neural networks
deep learning
embedded systems
Inference
Neural networks
title Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Inference%20of%20Binarized%20Convolutional%20Neural%20Networks%20Exploiting%20Max%20Pooling%20with%20Modified%20Block%20Structure&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=SHIN,%20Ji-Hoon&rft.date=2020-03-01&rft.volume=E103.D&rft.issue=3&rft.spage=706&rft.epage=710&rft.pages=706-710&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2019EDL8165&rft_dat=%3Cproquest_cross%3E2369530579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369530579&rft_id=info:pmid/&rfr_iscdi=true