Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions
Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remai...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2020-02, Vol.125 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of geophysical research. Solid earth |
container_volume | 125 |
creator | Rajaonarison, T. A. Stamps, D. S. Fishwick, S. Brune, S. Glerum, A. Hu, J. |
description | Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
Key Points
Asthenospheric flow patterns beneath Madagascar are predicted from edge‐driven convection and mantle wind modeling
Comparison of predicted shear wave splitting parameters with seismic anisotropy suggests a predominantly asthenospheric source
Dislocation creep rheology extends into the asthenosphere beneath some continental regions |
doi_str_mv | 10.1029/2019JB018560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369369531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369369531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3683-23f5c17999b4d13d9a0ae7f37e91470a6fb04b2abf1ea8f5ad9bd8849ba99cb43</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOObe_AMCvlpNmv7KoxtuOjaF4Z7Ltb10HV1Sk46x_97IdPjkcXDH8fneHV9Cbjl74CyUjyHjcj5mPIsTdkEGIU9kIEWcXJ57Lq7JyLkt85H5EY8GxL3td2ibElq6NBW2ja6pUXQJum-RTltzoGPUCP3GzyqowZVgaW_oxGjXW2g0XXcd2l_FaoOmNfXxrPJc32jUvb-wwrrxshtypaB1OPqpQ7KePn9MXoLF--x18rQIQCSZCEKh4pKnUsoiqrioJDDAVIkU_ecpg0QVLCpCKBRHyFQMlSyqLItkAVKWRSSG5O60t7Pmc4-uz7dmb7U_mYcikT5j78mQ3J-o0hrnLKq8s80O7DHnLP92Nv_rrMfFCT80LR7_ZfP5bDWOhYyE-ALq83qi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369369531</pqid></control><display><type>article</type><title>Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions</title><source>Wiley Online Library</source><source>Wiley Online Library Free Content</source><creator>Rajaonarison, T. A. ; Stamps, D. S. ; Fishwick, S. ; Brune, S. ; Glerum, A. ; Hu, J.</creator><creatorcontrib>Rajaonarison, T. A. ; Stamps, D. S. ; Fishwick, S. ; Brune, S. ; Glerum, A. ; Hu, J.</creatorcontrib><description>Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
Key Points
Asthenospheric flow patterns beneath Madagascar are predicted from edge‐driven convection and mantle wind modeling
Comparison of predicted shear wave splitting parameters with seismic anisotropy suggests a predominantly asthenospheric source
Dislocation creep rheology extends into the asthenosphere beneath some continental regions</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2019JB018560</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Asthenosphere ; Computer applications ; Computer simulation ; Convection ; Convection models ; Deformation ; Dislocation ; Earth mantle ; edge‐driven convection ; Fossils ; Geology ; Geophysics ; lattice preferred orientations ; Lithosphere ; lithosphere‐mantle wind interactions ; Magma ; Mantle convection ; mantle flow modeling ; Mathematical models ; Modelling ; Plate motion ; Plate tectonics ; Preferred orientation ; Regions ; Rheological properties ; Rheology ; seismic anisotropy ; Shear zone ; Solifluction ; splitting parameters ; Upper mantle ; Wind</subject><ispartof>Journal of geophysical research. Solid earth, 2020-02, Vol.125 (2), p.n/a</ispartof><rights>2019. The Authors.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3683-23f5c17999b4d13d9a0ae7f37e91470a6fb04b2abf1ea8f5ad9bd8849ba99cb43</citedby><cites>FETCH-LOGICAL-a3683-23f5c17999b4d13d9a0ae7f37e91470a6fb04b2abf1ea8f5ad9bd8849ba99cb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JB018560$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JB018560$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Rajaonarison, T. A.</creatorcontrib><creatorcontrib>Stamps, D. S.</creatorcontrib><creatorcontrib>Fishwick, S.</creatorcontrib><creatorcontrib>Brune, S.</creatorcontrib><creatorcontrib>Glerum, A.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><title>Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions</title><title>Journal of geophysical research. Solid earth</title><description>Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
Key Points
Asthenospheric flow patterns beneath Madagascar are predicted from edge‐driven convection and mantle wind modeling
Comparison of predicted shear wave splitting parameters with seismic anisotropy suggests a predominantly asthenospheric source
Dislocation creep rheology extends into the asthenosphere beneath some continental regions</description><subject>Anisotropy</subject><subject>Asthenosphere</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Convection models</subject><subject>Deformation</subject><subject>Dislocation</subject><subject>Earth mantle</subject><subject>edge‐driven convection</subject><subject>Fossils</subject><subject>Geology</subject><subject>Geophysics</subject><subject>lattice preferred orientations</subject><subject>Lithosphere</subject><subject>lithosphere‐mantle wind interactions</subject><subject>Magma</subject><subject>Mantle convection</subject><subject>mantle flow modeling</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Plate motion</subject><subject>Plate tectonics</subject><subject>Preferred orientation</subject><subject>Regions</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>seismic anisotropy</subject><subject>Shear zone</subject><subject>Solifluction</subject><subject>splitting parameters</subject><subject>Upper mantle</subject><subject>Wind</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kN9LwzAQx4MoOObe_AMCvlpNmv7KoxtuOjaF4Z7Ltb10HV1Sk46x_97IdPjkcXDH8fneHV9Cbjl74CyUjyHjcj5mPIsTdkEGIU9kIEWcXJ57Lq7JyLkt85H5EY8GxL3td2ibElq6NBW2ja6pUXQJum-RTltzoGPUCP3GzyqowZVgaW_oxGjXW2g0XXcd2l_FaoOmNfXxrPJc32jUvb-wwrrxshtypaB1OPqpQ7KePn9MXoLF--x18rQIQCSZCEKh4pKnUsoiqrioJDDAVIkU_ecpg0QVLCpCKBRHyFQMlSyqLItkAVKWRSSG5O60t7Pmc4-uz7dmb7U_mYcikT5j78mQ3J-o0hrnLKq8s80O7DHnLP92Nv_rrMfFCT80LR7_ZfP5bDWOhYyE-ALq83qi</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Rajaonarison, T. A.</creator><creator>Stamps, D. S.</creator><creator>Fishwick, S.</creator><creator>Brune, S.</creator><creator>Glerum, A.</creator><creator>Hu, J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202002</creationdate><title>Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions</title><author>Rajaonarison, T. A. ; Stamps, D. S. ; Fishwick, S. ; Brune, S. ; Glerum, A. ; Hu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3683-23f5c17999b4d13d9a0ae7f37e91470a6fb04b2abf1ea8f5ad9bd8849ba99cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Asthenosphere</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Convection models</topic><topic>Deformation</topic><topic>Dislocation</topic><topic>Earth mantle</topic><topic>edge‐driven convection</topic><topic>Fossils</topic><topic>Geology</topic><topic>Geophysics</topic><topic>lattice preferred orientations</topic><topic>Lithosphere</topic><topic>lithosphere‐mantle wind interactions</topic><topic>Magma</topic><topic>Mantle convection</topic><topic>mantle flow modeling</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Plate motion</topic><topic>Plate tectonics</topic><topic>Preferred orientation</topic><topic>Regions</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>seismic anisotropy</topic><topic>Shear zone</topic><topic>Solifluction</topic><topic>splitting parameters</topic><topic>Upper mantle</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaonarison, T. A.</creatorcontrib><creatorcontrib>Stamps, D. S.</creatorcontrib><creatorcontrib>Fishwick, S.</creatorcontrib><creatorcontrib>Brune, S.</creatorcontrib><creatorcontrib>Glerum, A.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaonarison, T. A.</au><au>Stamps, D. S.</au><au>Fishwick, S.</au><au>Brune, S.</au><au>Glerum, A.</au><au>Hu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2020-02</date><risdate>2020</risdate><volume>125</volume><issue>2</issue><epage>n/a</epage><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.
Key Points
Asthenospheric flow patterns beneath Madagascar are predicted from edge‐driven convection and mantle wind modeling
Comparison of predicted shear wave splitting parameters with seismic anisotropy suggests a predominantly asthenospheric source
Dislocation creep rheology extends into the asthenosphere beneath some continental regions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JB018560</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2020-02, Vol.125 (2), p.n/a |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2369369531 |
source | Wiley Online Library; Wiley Online Library Free Content |
subjects | Anisotropy Asthenosphere Computer applications Computer simulation Convection Convection models Deformation Dislocation Earth mantle edge‐driven convection Fossils Geology Geophysics lattice preferred orientations Lithosphere lithosphere‐mantle wind interactions Magma Mantle convection mantle flow modeling Mathematical models Modelling Plate motion Plate tectonics Preferred orientation Regions Rheological properties Rheology seismic anisotropy Shear zone Solifluction splitting parameters Upper mantle Wind |
title | Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Mantle%20Flow%20Beneath%20Madagascar%20to%20Constrain%20Upper%20Mantle%20Rheology%20Beneath%20Continental%20Regions&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Rajaonarison,%20T.%20A.&rft.date=2020-02&rft.volume=125&rft.issue=2&rft.epage=n/a&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2019JB018560&rft_dat=%3Cproquest_cross%3E2369369531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369369531&rft_id=info:pmid/&rfr_iscdi=true |