Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion & increase open circuit voltage

Presently, most of the cells using BaZr0.8Y0.2O3-δ (BZY20) electrolyte were prepared by a co-sintering process performed between 1400 and 1600 °C. However, during the co-sintering process, Ni diffuses from the anode substrate into the BZY20 electrolyte layer, resulting in the decrease in both the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2020-02, Vol.345, p.115189, Article 115189
Hauptverfasser: Han, Donglin, Kuramitsu, Akiko, Onishi, Takayuki, Noda, Yohei, Majima, Masatoshi, Uda, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115189
container_title Solid state ionics
container_volume 345
creator Han, Donglin
Kuramitsu, Akiko
Onishi, Takayuki
Noda, Yohei
Majima, Masatoshi
Uda, Tetsuya
description Presently, most of the cells using BaZr0.8Y0.2O3-δ (BZY20) electrolyte were prepared by a co-sintering process performed between 1400 and 1600 °C. However, during the co-sintering process, Ni diffuses from the anode substrate into the BZY20 electrolyte layer, resulting in the decrease in both the proton conductivity and transport number of proton conduction. Furthermore, second phases like BaY2NiO5 form in the electrolyte, and the Y content decreases dramatically to about 5-6 at.%. All these issues indicate that the co-sintering process will restrict the further development of the BZY20 electrolyte-based cells, and some new method is necessary. In this work, we report a new cell fabrication method by infiltrating ink containing Ni nanoparticles into preliminarily sintered BZY20 cell with a porous layer, to suppress the unfavorable Ni diffusion and Y loss in the BZY20 electrolyte, which are problems in the conventional co-sintering process. This process is easy in manipulation and low in cost, and most importantly, makes the cell using the pristine BZY20 electrolyte possible. However, this approach needs to be improved or optimized by thinning the electrolyte, improving the adhesion between the electrolyte and electrode, and optimizing the anode structure. •Unfavorable diffusion of Ni and loss of Y in BZY20 electrolyte due to co-sintering•New anode structure by infiltrating Ni nanoparticles into porous BZY20 scaffold•Suppression of Ni diffusion and Y loss in BZ20 electrolyte by infiltration process•Improvement in open circuit voltage by infiltration process
doi_str_mv 10.1016/j.ssi.2019.115189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369319171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273819303686</els_id><sourcerecordid>2369319171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3cce92ee8aec933b57528b3444b661942c49eb91e283f513a975a97e13250c8f3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMoeK3-AHcBwd3czknmI9FVKVaFYje6Dpnck3ou02RMMrf0t_hnzWVcdxEOgec5H7yMvYd2Dy0Ml8d9zrQXLeg9QA9Kv2A7UKNoxkHpl2xXmbERo1Sv2Zucj23bDlINO_b3xk6JnC0UA4-eLymWGMhxh8k-1OpXnOtnnjM_keUUPM0lbfwjld_8B_FgQ1xsKuRmzJ_4FQ_4yPOZwvsnXiLP67IkzLnCd_xA3q_57H-s7VxCm5HHBQN3lNxKhZ_iXOw9vmWvvJ0zvvtfL9ivmy8_r781t3dfv19f3TZOir400jnUAlFZdFrKqR97oSbZdd00DKA74TqNkwYUSvoepNVjXx9CtVunvLxgH7a-9fg_K-ZijnFNoY40Qg5agoYRKgUb5VLMOaE3S6IHm54MtOacgTmamoE5Z2C2DKrzeXOwrn8iTCY7wuDwQAldMYdIz9j_APENkXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369319171</pqid></control><display><type>article</type><title>Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion &amp; increase open circuit voltage</title><source>Elsevier ScienceDirect Journals</source><creator>Han, Donglin ; Kuramitsu, Akiko ; Onishi, Takayuki ; Noda, Yohei ; Majima, Masatoshi ; Uda, Tetsuya</creator><creatorcontrib>Han, Donglin ; Kuramitsu, Akiko ; Onishi, Takayuki ; Noda, Yohei ; Majima, Masatoshi ; Uda, Tetsuya</creatorcontrib><description>Presently, most of the cells using BaZr0.8Y0.2O3-δ (BZY20) electrolyte were prepared by a co-sintering process performed between 1400 and 1600 °C. However, during the co-sintering process, Ni diffuses from the anode substrate into the BZY20 electrolyte layer, resulting in the decrease in both the proton conductivity and transport number of proton conduction. Furthermore, second phases like BaY2NiO5 form in the electrolyte, and the Y content decreases dramatically to about 5-6 at.%. All these issues indicate that the co-sintering process will restrict the further development of the BZY20 electrolyte-based cells, and some new method is necessary. In this work, we report a new cell fabrication method by infiltrating ink containing Ni nanoparticles into preliminarily sintered BZY20 cell with a porous layer, to suppress the unfavorable Ni diffusion and Y loss in the BZY20 electrolyte, which are problems in the conventional co-sintering process. This process is easy in manipulation and low in cost, and most importantly, makes the cell using the pristine BZY20 electrolyte possible. However, this approach needs to be improved or optimized by thinning the electrolyte, improving the adhesion between the electrolyte and electrode, and optimizing the anode structure. •Unfavorable diffusion of Ni and loss of Y in BZY20 electrolyte due to co-sintering•New anode structure by infiltrating Ni nanoparticles into porous BZY20 scaffold•Suppression of Ni diffusion and Y loss in BZ20 electrolyte by infiltration process•Improvement in open circuit voltage by infiltration process</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2019.115189</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Barium zirconate ; Batteries ; Co-sintering ; Diffusion layers ; Electrolytes ; Electrolytic cells ; Fuel cell ; Fuel cells ; Infiltration ; Lithium ; Nanoparticles ; Open circuit voltage ; Photonics ; Proton conduction ; Proton conductor ; Sintering ; Sintering (powder metallurgy) ; Substrates</subject><ispartof>Solid state ionics, 2020-02, Vol.345, p.115189, Article 115189</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3cce92ee8aec933b57528b3444b661942c49eb91e283f513a975a97e13250c8f3</citedby><cites>FETCH-LOGICAL-c325t-3cce92ee8aec933b57528b3444b661942c49eb91e283f513a975a97e13250c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273819303686$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Kuramitsu, Akiko</creatorcontrib><creatorcontrib>Onishi, Takayuki</creatorcontrib><creatorcontrib>Noda, Yohei</creatorcontrib><creatorcontrib>Majima, Masatoshi</creatorcontrib><creatorcontrib>Uda, Tetsuya</creatorcontrib><title>Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion &amp; increase open circuit voltage</title><title>Solid state ionics</title><description>Presently, most of the cells using BaZr0.8Y0.2O3-δ (BZY20) electrolyte were prepared by a co-sintering process performed between 1400 and 1600 °C. However, during the co-sintering process, Ni diffuses from the anode substrate into the BZY20 electrolyte layer, resulting in the decrease in both the proton conductivity and transport number of proton conduction. Furthermore, second phases like BaY2NiO5 form in the electrolyte, and the Y content decreases dramatically to about 5-6 at.%. All these issues indicate that the co-sintering process will restrict the further development of the BZY20 electrolyte-based cells, and some new method is necessary. In this work, we report a new cell fabrication method by infiltrating ink containing Ni nanoparticles into preliminarily sintered BZY20 cell with a porous layer, to suppress the unfavorable Ni diffusion and Y loss in the BZY20 electrolyte, which are problems in the conventional co-sintering process. This process is easy in manipulation and low in cost, and most importantly, makes the cell using the pristine BZY20 electrolyte possible. However, this approach needs to be improved or optimized by thinning the electrolyte, improving the adhesion between the electrolyte and electrode, and optimizing the anode structure. •Unfavorable diffusion of Ni and loss of Y in BZY20 electrolyte due to co-sintering•New anode structure by infiltrating Ni nanoparticles into porous BZY20 scaffold•Suppression of Ni diffusion and Y loss in BZ20 electrolyte by infiltration process•Improvement in open circuit voltage by infiltration process</description><subject>Anodes</subject><subject>Barium zirconate</subject><subject>Batteries</subject><subject>Co-sintering</subject><subject>Diffusion layers</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Infiltration</subject><subject>Lithium</subject><subject>Nanoparticles</subject><subject>Open circuit voltage</subject><subject>Photonics</subject><subject>Proton conduction</subject><subject>Proton conductor</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Substrates</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMoeK3-AHcBwd3czknmI9FVKVaFYje6Dpnck3ou02RMMrf0t_hnzWVcdxEOgec5H7yMvYd2Dy0Ml8d9zrQXLeg9QA9Kv2A7UKNoxkHpl2xXmbERo1Sv2Zucj23bDlINO_b3xk6JnC0UA4-eLymWGMhxh8k-1OpXnOtnnjM_keUUPM0lbfwjld_8B_FgQ1xsKuRmzJ_4FQ_4yPOZwvsnXiLP67IkzLnCd_xA3q_57H-s7VxCm5HHBQN3lNxKhZ_iXOw9vmWvvJ0zvvtfL9ivmy8_r781t3dfv19f3TZOir400jnUAlFZdFrKqR97oSbZdd00DKA74TqNkwYUSvoepNVjXx9CtVunvLxgH7a-9fg_K-ZijnFNoY40Qg5agoYRKgUb5VLMOaE3S6IHm54MtOacgTmamoE5Z2C2DKrzeXOwrn8iTCY7wuDwQAldMYdIz9j_APENkXE</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Donglin</creator><creator>Kuramitsu, Akiko</creator><creator>Onishi, Takayuki</creator><creator>Noda, Yohei</creator><creator>Majima, Masatoshi</creator><creator>Uda, Tetsuya</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202002</creationdate><title>Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion &amp; increase open circuit voltage</title><author>Han, Donglin ; Kuramitsu, Akiko ; Onishi, Takayuki ; Noda, Yohei ; Majima, Masatoshi ; Uda, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3cce92ee8aec933b57528b3444b661942c49eb91e283f513a975a97e13250c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Barium zirconate</topic><topic>Batteries</topic><topic>Co-sintering</topic><topic>Diffusion layers</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Infiltration</topic><topic>Lithium</topic><topic>Nanoparticles</topic><topic>Open circuit voltage</topic><topic>Photonics</topic><topic>Proton conduction</topic><topic>Proton conductor</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Donglin</creatorcontrib><creatorcontrib>Kuramitsu, Akiko</creatorcontrib><creatorcontrib>Onishi, Takayuki</creatorcontrib><creatorcontrib>Noda, Yohei</creatorcontrib><creatorcontrib>Majima, Masatoshi</creatorcontrib><creatorcontrib>Uda, Tetsuya</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Donglin</au><au>Kuramitsu, Akiko</au><au>Onishi, Takayuki</au><au>Noda, Yohei</au><au>Majima, Masatoshi</au><au>Uda, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion &amp; increase open circuit voltage</atitle><jtitle>Solid state ionics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>345</volume><spage>115189</spage><pages>115189-</pages><artnum>115189</artnum><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Presently, most of the cells using BaZr0.8Y0.2O3-δ (BZY20) electrolyte were prepared by a co-sintering process performed between 1400 and 1600 °C. However, during the co-sintering process, Ni diffuses from the anode substrate into the BZY20 electrolyte layer, resulting in the decrease in both the proton conductivity and transport number of proton conduction. Furthermore, second phases like BaY2NiO5 form in the electrolyte, and the Y content decreases dramatically to about 5-6 at.%. All these issues indicate that the co-sintering process will restrict the further development of the BZY20 electrolyte-based cells, and some new method is necessary. In this work, we report a new cell fabrication method by infiltrating ink containing Ni nanoparticles into preliminarily sintered BZY20 cell with a porous layer, to suppress the unfavorable Ni diffusion and Y loss in the BZY20 electrolyte, which are problems in the conventional co-sintering process. This process is easy in manipulation and low in cost, and most importantly, makes the cell using the pristine BZY20 electrolyte possible. However, this approach needs to be improved or optimized by thinning the electrolyte, improving the adhesion between the electrolyte and electrode, and optimizing the anode structure. •Unfavorable diffusion of Ni and loss of Y in BZY20 electrolyte due to co-sintering•New anode structure by infiltrating Ni nanoparticles into porous BZY20 scaffold•Suppression of Ni diffusion and Y loss in BZ20 electrolyte by infiltration process•Improvement in open circuit voltage by infiltration process</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2019.115189</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2020-02, Vol.345, p.115189, Article 115189
issn 0167-2738
1872-7689
language eng
recordid cdi_proquest_journals_2369319171
source Elsevier ScienceDirect Journals
subjects Anodes
Barium zirconate
Batteries
Co-sintering
Diffusion layers
Electrolytes
Electrolytic cells
Fuel cell
Fuel cells
Infiltration
Lithium
Nanoparticles
Open circuit voltage
Photonics
Proton conduction
Proton conductor
Sintering
Sintering (powder metallurgy)
Substrates
title Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles: A new strategy to suppress NiO diffusion & increase open circuit voltage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20protonic%20ceramic%20fuel%20cells%20via%20infiltration%20with%20Ni%20nanoparticles:%20A%20new%20strategy%20to%20suppress%20NiO%20diffusion%20&%20increase%20open%20circuit%20voltage&rft.jtitle=Solid%20state%20ionics&rft.au=Han,%20Donglin&rft.date=2020-02&rft.volume=345&rft.spage=115189&rft.pages=115189-&rft.artnum=115189&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2019.115189&rft_dat=%3Cproquest_cross%3E2369319171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369319171&rft_id=info:pmid/&rft_els_id=S0167273819303686&rfr_iscdi=true