Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach
Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-03, Vol.26 (13), p.2826-2836 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2836 |
---|---|
container_issue | 13 |
container_start_page | 2826 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Nair, Resmi V. Nair, Lakshmi V. Govindachar, Divya Maldepalli Santhakumar, Hema Nazeer, Shaiju S. Rekha, Charuvil Radhakrishnapillai Shenoy, Sachin J. Periyasamy, Ganga Jayasree, Ramapurath S. |
description | Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo.
Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo. |
doi_str_mv | 10.1002/chem.201904952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369313901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369313901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</originalsourceid><addsrcrecordid>eNqFkc2O0zAURi3EiCkDW5bIEusUO05Sm92ohJlKnYFFWUe3znXjUWMHOxGUFY_Ac_BYPAmuOj9LJEuWfY_Ptf0R8oazOWcsf6877Oc544oVqsyfkRkvc56JRVU-JzOmikVWlUKdk5cx3jHGVCXEC3Iu-IILlcsZ-bOeeuswanQjvfL7lt6C88G3kW48rV0HTiMdO6S3COHvr98rZwIEbGnd2xitd9QbCvRL50cf0UU72p8YqPGBbiDscEzo8igJdNXDzrodBdfSjxPs6abDAMPhA61_DBhsn-6Qdo_lVPEBR6vT-nIYggfdvSJnBvYRX9_PF-Trp3qzvM7Wn69Wy8t1pgvO8qxNr5ZbAbnkldSmlIaBFJWSrOBSllwwzcqtMmkU7QIrDqaAouIamSlQgbgg707e1PbbhHFs7vwUXGrZ5Mkj0s8xnqj5idLBxxjQNEN6AYRDw1lzjKY5RtM8RpMOvL3XTtse20f8IYsEqBPw3e7x8B9ds7yub57k_wA0qp2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369313901</pqid></control><display><type>article</type><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</creator><creatorcontrib>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</creatorcontrib><description>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo.
Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904952</identifier><identifier>PMID: 31713928</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Animals ; Biomedical materials ; Chemistry ; Chromaticity ; Chromophores ; Emission analysis ; Energy Transfer ; Fluorescence ; Gold ; Gold - chemistry ; gold nanorods ; Humans ; imaging agents ; Luminescence ; Medical imaging ; Nanorods ; Nanostructures ; Nanotubes - chemistry ; Photodynamic therapy ; Photosensitizing Agents - chemistry ; photothermal therapy ; Principal components analysis ; protoporphyrin IX ; Theranostic Nanomedicine - methods</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (13), p.2826-2836</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</citedby><cites>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</cites><orcidid>0000-0001-6810-9879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201904952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201904952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31713928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Resmi V.</creatorcontrib><creatorcontrib>Nair, Lakshmi V.</creatorcontrib><creatorcontrib>Govindachar, Divya Maldepalli</creatorcontrib><creatorcontrib>Santhakumar, Hema</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Rekha, Charuvil Radhakrishnapillai</creatorcontrib><creatorcontrib>Shenoy, Sachin J.</creatorcontrib><creatorcontrib>Periyasamy, Ganga</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S.</creatorcontrib><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo.
Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</description><subject>Absorption</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Chromaticity</subject><subject>Chromophores</subject><subject>Emission analysis</subject><subject>Energy Transfer</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>gold nanorods</subject><subject>Humans</subject><subject>imaging agents</subject><subject>Luminescence</subject><subject>Medical imaging</subject><subject>Nanorods</subject><subject>Nanostructures</subject><subject>Nanotubes - chemistry</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - chemistry</subject><subject>photothermal therapy</subject><subject>Principal components analysis</subject><subject>protoporphyrin IX</subject><subject>Theranostic Nanomedicine - methods</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2O0zAURi3EiCkDW5bIEusUO05Sm92ohJlKnYFFWUe3znXjUWMHOxGUFY_Ac_BYPAmuOj9LJEuWfY_Ptf0R8oazOWcsf6877Oc544oVqsyfkRkvc56JRVU-JzOmikVWlUKdk5cx3jHGVCXEC3Iu-IILlcsZ-bOeeuswanQjvfL7lt6C88G3kW48rV0HTiMdO6S3COHvr98rZwIEbGnd2xitd9QbCvRL50cf0UU72p8YqPGBbiDscEzo8igJdNXDzrodBdfSjxPs6abDAMPhA61_DBhsn-6Qdo_lVPEBR6vT-nIYggfdvSJnBvYRX9_PF-Trp3qzvM7Wn69Wy8t1pgvO8qxNr5ZbAbnkldSmlIaBFJWSrOBSllwwzcqtMmkU7QIrDqaAouIamSlQgbgg707e1PbbhHFs7vwUXGrZ5Mkj0s8xnqj5idLBxxjQNEN6AYRDw1lzjKY5RtM8RpMOvL3XTtse20f8IYsEqBPw3e7x8B9ds7yub57k_wA0qp2u</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Nair, Resmi V.</creator><creator>Nair, Lakshmi V.</creator><creator>Govindachar, Divya Maldepalli</creator><creator>Santhakumar, Hema</creator><creator>Nazeer, Shaiju S.</creator><creator>Rekha, Charuvil Radhakrishnapillai</creator><creator>Shenoy, Sachin J.</creator><creator>Periyasamy, Ganga</creator><creator>Jayasree, Ramapurath S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid></search><sort><creationdate>20200302</creationdate><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><author>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Chromaticity</topic><topic>Chromophores</topic><topic>Emission analysis</topic><topic>Energy Transfer</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>gold nanorods</topic><topic>Humans</topic><topic>imaging agents</topic><topic>Luminescence</topic><topic>Medical imaging</topic><topic>Nanorods</topic><topic>Nanostructures</topic><topic>Nanotubes - chemistry</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - chemistry</topic><topic>photothermal therapy</topic><topic>Principal components analysis</topic><topic>protoporphyrin IX</topic><topic>Theranostic Nanomedicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Resmi V.</creatorcontrib><creatorcontrib>Nair, Lakshmi V.</creatorcontrib><creatorcontrib>Govindachar, Divya Maldepalli</creatorcontrib><creatorcontrib>Santhakumar, Hema</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Rekha, Charuvil Radhakrishnapillai</creatorcontrib><creatorcontrib>Shenoy, Sachin J.</creatorcontrib><creatorcontrib>Periyasamy, Ganga</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Resmi V.</au><au>Nair, Lakshmi V.</au><au>Govindachar, Divya Maldepalli</au><au>Santhakumar, Hema</au><au>Nazeer, Shaiju S.</au><au>Rekha, Charuvil Radhakrishnapillai</au><au>Shenoy, Sachin J.</au><au>Periyasamy, Ganga</au><au>Jayasree, Ramapurath S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>26</volume><issue>13</issue><spage>2826</spage><epage>2836</epage><pages>2826-2836</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo.
Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31713928</pmid><doi>10.1002/chem.201904952</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-03, Vol.26 (13), p.2826-2836 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_journals_2369313901 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Absorption Animals Biomedical materials Chemistry Chromaticity Chromophores Emission analysis Energy Transfer Fluorescence Gold Gold - chemistry gold nanorods Humans imaging agents Luminescence Medical imaging Nanorods Nanostructures Nanotubes - chemistry Photodynamic therapy Photosensitizing Agents - chemistry photothermal therapy Principal components analysis protoporphyrin IX Theranostic Nanomedicine - methods |
title | Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Gold%20Nanorods%20To%20Enhance%20the%20Near%E2%80%90Infrared%20Emission%20of%20a%20Photosensitizer%20for%20Targeted%20Cancer%20Imaging%20and%20Dual%20Therapy:%20Experimental%20and%20Theoretical%20Approach&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nair,%20Resmi%20V.&rft.date=2020-03-02&rft.volume=26&rft.issue=13&rft.spage=2826&rft.epage=2836&rft.pages=2826-2836&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904952&rft_dat=%3Cproquest_cross%3E2369313901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369313901&rft_id=info:pmid/31713928&rfr_iscdi=true |