Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach

Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-03, Vol.26 (13), p.2826-2836
Hauptverfasser: Nair, Resmi V., Nair, Lakshmi V., Govindachar, Divya Maldepalli, Santhakumar, Hema, Nazeer, Shaiju S., Rekha, Charuvil Radhakrishnapillai, Shenoy, Sachin J., Periyasamy, Ganga, Jayasree, Ramapurath S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2836
container_issue 13
container_start_page 2826
container_title Chemistry : a European journal
container_volume 26
creator Nair, Resmi V.
Nair, Lakshmi V.
Govindachar, Divya Maldepalli
Santhakumar, Hema
Nazeer, Shaiju S.
Rekha, Charuvil Radhakrishnapillai
Shenoy, Sachin J.
Periyasamy, Ganga
Jayasree, Ramapurath S.
description Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo. Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.
doi_str_mv 10.1002/chem.201904952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369313901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369313901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</originalsourceid><addsrcrecordid>eNqFkc2O0zAURi3EiCkDW5bIEusUO05Sm92ohJlKnYFFWUe3znXjUWMHOxGUFY_Ac_BYPAmuOj9LJEuWfY_Ptf0R8oazOWcsf6877Oc544oVqsyfkRkvc56JRVU-JzOmikVWlUKdk5cx3jHGVCXEC3Iu-IILlcsZ-bOeeuswanQjvfL7lt6C88G3kW48rV0HTiMdO6S3COHvr98rZwIEbGnd2xitd9QbCvRL50cf0UU72p8YqPGBbiDscEzo8igJdNXDzrodBdfSjxPs6abDAMPhA61_DBhsn-6Qdo_lVPEBR6vT-nIYggfdvSJnBvYRX9_PF-Trp3qzvM7Wn69Wy8t1pgvO8qxNr5ZbAbnkldSmlIaBFJWSrOBSllwwzcqtMmkU7QIrDqaAouIamSlQgbgg707e1PbbhHFs7vwUXGrZ5Mkj0s8xnqj5idLBxxjQNEN6AYRDw1lzjKY5RtM8RpMOvL3XTtse20f8IYsEqBPw3e7x8B9ds7yub57k_wA0qp2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369313901</pqid></control><display><type>article</type><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</creator><creatorcontrib>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</creatorcontrib><description>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo. Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904952</identifier><identifier>PMID: 31713928</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Animals ; Biomedical materials ; Chemistry ; Chromaticity ; Chromophores ; Emission analysis ; Energy Transfer ; Fluorescence ; Gold ; Gold - chemistry ; gold nanorods ; Humans ; imaging agents ; Luminescence ; Medical imaging ; Nanorods ; Nanostructures ; Nanotubes - chemistry ; Photodynamic therapy ; Photosensitizing Agents - chemistry ; photothermal therapy ; Principal components analysis ; protoporphyrin IX ; Theranostic Nanomedicine - methods</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (13), p.2826-2836</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</citedby><cites>FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</cites><orcidid>0000-0001-6810-9879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201904952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201904952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31713928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Resmi V.</creatorcontrib><creatorcontrib>Nair, Lakshmi V.</creatorcontrib><creatorcontrib>Govindachar, Divya Maldepalli</creatorcontrib><creatorcontrib>Santhakumar, Hema</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Rekha, Charuvil Radhakrishnapillai</creatorcontrib><creatorcontrib>Shenoy, Sachin J.</creatorcontrib><creatorcontrib>Periyasamy, Ganga</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S.</creatorcontrib><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo. Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</description><subject>Absorption</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Chromaticity</subject><subject>Chromophores</subject><subject>Emission analysis</subject><subject>Energy Transfer</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>gold nanorods</subject><subject>Humans</subject><subject>imaging agents</subject><subject>Luminescence</subject><subject>Medical imaging</subject><subject>Nanorods</subject><subject>Nanostructures</subject><subject>Nanotubes - chemistry</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - chemistry</subject><subject>photothermal therapy</subject><subject>Principal components analysis</subject><subject>protoporphyrin IX</subject><subject>Theranostic Nanomedicine - methods</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2O0zAURi3EiCkDW5bIEusUO05Sm92ohJlKnYFFWUe3znXjUWMHOxGUFY_Ac_BYPAmuOj9LJEuWfY_Ptf0R8oazOWcsf6877Oc544oVqsyfkRkvc56JRVU-JzOmikVWlUKdk5cx3jHGVCXEC3Iu-IILlcsZ-bOeeuswanQjvfL7lt6C88G3kW48rV0HTiMdO6S3COHvr98rZwIEbGnd2xitd9QbCvRL50cf0UU72p8YqPGBbiDscEzo8igJdNXDzrodBdfSjxPs6abDAMPhA61_DBhsn-6Qdo_lVPEBR6vT-nIYggfdvSJnBvYRX9_PF-Trp3qzvM7Wn69Wy8t1pgvO8qxNr5ZbAbnkldSmlIaBFJWSrOBSllwwzcqtMmkU7QIrDqaAouIamSlQgbgg707e1PbbhHFs7vwUXGrZ5Mkj0s8xnqj5idLBxxjQNEN6AYRDw1lzjKY5RtM8RpMOvL3XTtse20f8IYsEqBPw3e7x8B9ds7yub57k_wA0qp2u</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Nair, Resmi V.</creator><creator>Nair, Lakshmi V.</creator><creator>Govindachar, Divya Maldepalli</creator><creator>Santhakumar, Hema</creator><creator>Nazeer, Shaiju S.</creator><creator>Rekha, Charuvil Radhakrishnapillai</creator><creator>Shenoy, Sachin J.</creator><creator>Periyasamy, Ganga</creator><creator>Jayasree, Ramapurath S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid></search><sort><creationdate>20200302</creationdate><title>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</title><author>Nair, Resmi V. ; Nair, Lakshmi V. ; Govindachar, Divya Maldepalli ; Santhakumar, Hema ; Nazeer, Shaiju S. ; Rekha, Charuvil Radhakrishnapillai ; Shenoy, Sachin J. ; Periyasamy, Ganga ; Jayasree, Ramapurath S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-d0948b3a28168cf58f0a83698041885130c05b9fb9f4d7e61af4a461ce0f4e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Chromaticity</topic><topic>Chromophores</topic><topic>Emission analysis</topic><topic>Energy Transfer</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>gold nanorods</topic><topic>Humans</topic><topic>imaging agents</topic><topic>Luminescence</topic><topic>Medical imaging</topic><topic>Nanorods</topic><topic>Nanostructures</topic><topic>Nanotubes - chemistry</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - chemistry</topic><topic>photothermal therapy</topic><topic>Principal components analysis</topic><topic>protoporphyrin IX</topic><topic>Theranostic Nanomedicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Resmi V.</creatorcontrib><creatorcontrib>Nair, Lakshmi V.</creatorcontrib><creatorcontrib>Govindachar, Divya Maldepalli</creatorcontrib><creatorcontrib>Santhakumar, Hema</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Rekha, Charuvil Radhakrishnapillai</creatorcontrib><creatorcontrib>Shenoy, Sachin J.</creatorcontrib><creatorcontrib>Periyasamy, Ganga</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Resmi V.</au><au>Nair, Lakshmi V.</au><au>Govindachar, Divya Maldepalli</au><au>Santhakumar, Hema</au><au>Nazeer, Shaiju S.</au><au>Rekha, Charuvil Radhakrishnapillai</au><au>Shenoy, Sachin J.</au><au>Periyasamy, Ganga</au><au>Jayasree, Ramapurath S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>26</volume><issue>13</issue><spage>2826</spage><epage>2836</epage><pages>2826-2836</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Strong plasmon absorption in the near‐infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR–PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation‐dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR–PS complex modified for tumor specificity serves as an excellent organ‐specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long‐term efficacy in vivo. Laser‐point accuracy: Near‐IR emission of protoporphyrin IX is enriched by the weak emission of plasmonic gold nanoparticles through a competitive charge‐transfer mechanism. The near‐IR emitting multifunctional system also has cancer‐targeting ability for imaging and multimodal therapy both in vitro and in vivo.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31713928</pmid><doi>10.1002/chem.201904952</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-03, Vol.26 (13), p.2826-2836
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_2369313901
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Absorption
Animals
Biomedical materials
Chemistry
Chromaticity
Chromophores
Emission analysis
Energy Transfer
Fluorescence
Gold
Gold - chemistry
gold nanorods
Humans
imaging agents
Luminescence
Medical imaging
Nanorods
Nanostructures
Nanotubes - chemistry
Photodynamic therapy
Photosensitizing Agents - chemistry
photothermal therapy
Principal components analysis
protoporphyrin IX
Theranostic Nanomedicine - methods
title Luminescent Gold Nanorods To Enhance the Near‐Infrared Emission of a Photosensitizer for Targeted Cancer Imaging and Dual Therapy: Experimental and Theoretical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Gold%20Nanorods%20To%20Enhance%20the%20Near%E2%80%90Infrared%20Emission%20of%20a%20Photosensitizer%20for%20Targeted%20Cancer%20Imaging%20and%20Dual%20Therapy:%20Experimental%20and%20Theoretical%20Approach&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nair,%20Resmi%20V.&rft.date=2020-03-02&rft.volume=26&rft.issue=13&rft.spage=2826&rft.epage=2836&rft.pages=2826-2836&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904952&rft_dat=%3Cproquest_cross%3E2369313901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369313901&rft_id=info:pmid/31713928&rfr_iscdi=true