Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency

Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2020-03, Vol.27 (5), p.2521-2528
Hauptverfasser: Lim, Jihye, Kim, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2528
container_issue 5
container_start_page 2521
container_title Cellulose (London)
container_volume 27
creator Lim, Jihye
Kim, J. R.
description Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO 2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO 2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H *, which is characterized by T np . The prediction and measurement of the apparent contact angle θ nf in CA-SiO 2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure. Graphic abstract
doi_str_mv 10.1007/s10570-019-02959-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369255352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369255352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9diXZDIzWUrxCwpuFNyFTOaNpEyTNsks2l_v1AruXL3Fvec-OITcMrhnAPUiMZA1FMBUAVxJVRzOyIzJmhdNwz_PyQxUdYyEuiRXKa0BQNWczUh4xrDBHJ2lKcfR5jEi3YTO9c6a7IKnzlOLwzAOISE1FrPJSL3xoXctxkSN76jLibrN1thMJ2Jwu9F1NGJyKRtvcRFxO02gt_trctGbIeHN752Tj6fH9-VLsXp7fl0-rAorZJULFIxLzpq2qRWoRla9skooEG0Pou5tiWAYilJ2pVJQWmSdbLGXlcG67mwr5uTutLuNYTdiynodxuinl5qLSnEpheRTi59aNoaUIvZ6G93GxL1moI9i9UmsnsTqH7H6MEHiBKWp7L8w_k3_Q30DMs1-pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369255352</pqid></control><display><type>article</type><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lim, Jihye ; Kim, J. R.</creator><creatorcontrib>Lim, Jihye ; Kim, J. R.</creatorcontrib><description>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO 2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO 2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H *, which is characterized by T np . The prediction and measurement of the apparent contact angle θ nf in CA-SiO 2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure. Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-019-02959-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Cellulose acetate ; Ceramics ; Chemical treatment ; Chemistry ; Chemistry and Materials Science ; Composites ; Contact angle ; Drops (liquids) ; Glass ; Impact resistance ; Nanofibers ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Resistance factors ; Silicon dioxide ; Solid surfaces ; Surface energy ; Sustainable Development</subject><ispartof>Cellulose (London), 2020-03, Vol.27 (5), p.2521-2528</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Cellulose is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</citedby><cites>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</cites><orcidid>0000-0002-3146-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-019-02959-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-019-02959-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Lim, Jihye</creatorcontrib><creatorcontrib>Kim, J. R.</creatorcontrib><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO 2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO 2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H *, which is characterized by T np . The prediction and measurement of the apparent contact angle θ nf in CA-SiO 2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure. Graphic abstract</description><subject>Bioorganic Chemistry</subject><subject>Cellulose acetate</subject><subject>Ceramics</subject><subject>Chemical treatment</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Drops (liquids)</subject><subject>Glass</subject><subject>Impact resistance</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Resistance factors</subject><subject>Silicon dioxide</subject><subject>Solid surfaces</subject><subject>Surface energy</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXA9diXZDIzWUrxCwpuFNyFTOaNpEyTNsks2l_v1AruXL3Fvec-OITcMrhnAPUiMZA1FMBUAVxJVRzOyIzJmhdNwz_PyQxUdYyEuiRXKa0BQNWczUh4xrDBHJ2lKcfR5jEi3YTO9c6a7IKnzlOLwzAOISE1FrPJSL3xoXctxkSN76jLibrN1thMJ2Jwu9F1NGJyKRtvcRFxO02gt_trctGbIeHN752Tj6fH9-VLsXp7fl0-rAorZJULFIxLzpq2qRWoRla9skooEG0Pou5tiWAYilJ2pVJQWmSdbLGXlcG67mwr5uTutLuNYTdiynodxuinl5qLSnEpheRTi59aNoaUIvZ6G93GxL1moI9i9UmsnsTqH7H6MEHiBKWp7L8w_k3_Q30DMs1-pA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Lim, Jihye</creator><creator>Kim, J. R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3146-7995</orcidid></search><sort><creationdate>20200301</creationdate><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><author>Lim, Jihye ; Kim, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioorganic Chemistry</topic><topic>Cellulose acetate</topic><topic>Ceramics</topic><topic>Chemical treatment</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Drops (liquids)</topic><topic>Glass</topic><topic>Impact resistance</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Resistance factors</topic><topic>Silicon dioxide</topic><topic>Solid surfaces</topic><topic>Surface energy</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jihye</creatorcontrib><creatorcontrib>Kim, J. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jihye</au><au>Kim, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>2521</spage><epage>2528</epage><pages>2521-2528</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO 2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO 2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H *, which is characterized by T np . The prediction and measurement of the apparent contact angle θ nf in CA-SiO 2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-019-02959-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3146-7995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2020-03, Vol.27 (5), p.2521-2528
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2369255352
source SpringerLink Journals - AutoHoldings
subjects Bioorganic Chemistry
Cellulose acetate
Ceramics
Chemical treatment
Chemistry
Chemistry and Materials Science
Composites
Contact angle
Drops (liquids)
Glass
Impact resistance
Nanofibers
Nanoparticles
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Resistance factors
Silicon dioxide
Solid surfaces
Surface energy
Sustainable Development
title Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20structure%20modification%20in%20cellulose%20acetate%20nanofibers%20and%20its%20impact%20on%20liquid%20resistance/repellency&rft.jtitle=Cellulose%20(London)&rft.au=Lim,%20Jihye&rft.date=2020-03-01&rft.volume=27&rft.issue=5&rft.spage=2521&rft.epage=2528&rft.pages=2521-2528&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-019-02959-z&rft_dat=%3Cproquest_cross%3E2369255352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369255352&rft_id=info:pmid/&rfr_iscdi=true