Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency
Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2020-03, Vol.27 (5), p.2521-2528 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2528 |
---|---|
container_issue | 5 |
container_start_page | 2521 |
container_title | Cellulose (London) |
container_volume | 27 |
creator | Lim, Jihye Kim, J. R. |
description | Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO
2
nanoparticles, and examining the impact of void spaces created by the entrapped SiO
2
into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using
H
*, which is characterized by
T
np
. The prediction and measurement of the apparent contact angle
θ
nf
in CA-SiO
2
nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.
Graphic abstract |
doi_str_mv | 10.1007/s10570-019-02959-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369255352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369255352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9diXZDIzWUrxCwpuFNyFTOaNpEyTNsks2l_v1AruXL3Fvec-OITcMrhnAPUiMZA1FMBUAVxJVRzOyIzJmhdNwz_PyQxUdYyEuiRXKa0BQNWczUh4xrDBHJ2lKcfR5jEi3YTO9c6a7IKnzlOLwzAOISE1FrPJSL3xoXctxkSN76jLibrN1thMJ2Jwu9F1NGJyKRtvcRFxO02gt_trctGbIeHN752Tj6fH9-VLsXp7fl0-rAorZJULFIxLzpq2qRWoRla9skooEG0Pou5tiWAYilJ2pVJQWmSdbLGXlcG67mwr5uTutLuNYTdiynodxuinl5qLSnEpheRTi59aNoaUIvZ6G93GxL1moI9i9UmsnsTqH7H6MEHiBKWp7L8w_k3_Q30DMs1-pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369255352</pqid></control><display><type>article</type><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lim, Jihye ; Kim, J. R.</creator><creatorcontrib>Lim, Jihye ; Kim, J. R.</creatorcontrib><description>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO
2
nanoparticles, and examining the impact of void spaces created by the entrapped SiO
2
into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using
H
*, which is characterized by
T
np
. The prediction and measurement of the apparent contact angle
θ
nf
in CA-SiO
2
nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-019-02959-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Cellulose acetate ; Ceramics ; Chemical treatment ; Chemistry ; Chemistry and Materials Science ; Composites ; Contact angle ; Drops (liquids) ; Glass ; Impact resistance ; Nanofibers ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Resistance factors ; Silicon dioxide ; Solid surfaces ; Surface energy ; Sustainable Development</subject><ispartof>Cellulose (London), 2020-03, Vol.27 (5), p.2521-2528</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Cellulose is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</citedby><cites>FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</cites><orcidid>0000-0002-3146-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-019-02959-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-019-02959-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Lim, Jihye</creatorcontrib><creatorcontrib>Kim, J. R.</creatorcontrib><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO
2
nanoparticles, and examining the impact of void spaces created by the entrapped SiO
2
into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using
H
*, which is characterized by
T
np
. The prediction and measurement of the apparent contact angle
θ
nf
in CA-SiO
2
nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.
Graphic abstract</description><subject>Bioorganic Chemistry</subject><subject>Cellulose acetate</subject><subject>Ceramics</subject><subject>Chemical treatment</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Drops (liquids)</subject><subject>Glass</subject><subject>Impact resistance</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Resistance factors</subject><subject>Silicon dioxide</subject><subject>Solid surfaces</subject><subject>Surface energy</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXA9diXZDIzWUrxCwpuFNyFTOaNpEyTNsks2l_v1AruXL3Fvec-OITcMrhnAPUiMZA1FMBUAVxJVRzOyIzJmhdNwz_PyQxUdYyEuiRXKa0BQNWczUh4xrDBHJ2lKcfR5jEi3YTO9c6a7IKnzlOLwzAOISE1FrPJSL3xoXctxkSN76jLibrN1thMJ2Jwu9F1NGJyKRtvcRFxO02gt_trctGbIeHN752Tj6fH9-VLsXp7fl0-rAorZJULFIxLzpq2qRWoRla9skooEG0Pou5tiWAYilJ2pVJQWmSdbLGXlcG67mwr5uTutLuNYTdiynodxuinl5qLSnEpheRTi59aNoaUIvZ6G93GxL1moI9i9UmsnsTqH7H6MEHiBKWp7L8w_k3_Q30DMs1-pA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Lim, Jihye</creator><creator>Kim, J. R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3146-7995</orcidid></search><sort><creationdate>20200301</creationdate><title>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</title><author>Lim, Jihye ; Kim, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e3125218b87909856f9c93903bf037fc4e0a1e345d49904ce1d5bef56ae77dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioorganic Chemistry</topic><topic>Cellulose acetate</topic><topic>Ceramics</topic><topic>Chemical treatment</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Drops (liquids)</topic><topic>Glass</topic><topic>Impact resistance</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Resistance factors</topic><topic>Silicon dioxide</topic><topic>Solid surfaces</topic><topic>Surface energy</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jihye</creatorcontrib><creatorcontrib>Kim, J. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jihye</au><au>Kim, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>2521</spage><epage>2528</epage><pages>2521-2528</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO
2
nanoparticles, and examining the impact of void spaces created by the entrapped SiO
2
into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using
H
*, which is characterized by
T
np
. The prediction and measurement of the apparent contact angle
θ
nf
in CA-SiO
2
nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-019-02959-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3146-7995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2020-03, Vol.27 (5), p.2521-2528 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2369255352 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bioorganic Chemistry Cellulose acetate Ceramics Chemical treatment Chemistry Chemistry and Materials Science Composites Contact angle Drops (liquids) Glass Impact resistance Nanofibers Nanoparticles Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Resistance factors Silicon dioxide Solid surfaces Surface energy Sustainable Development |
title | Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20structure%20modification%20in%20cellulose%20acetate%20nanofibers%20and%20its%20impact%20on%20liquid%20resistance/repellency&rft.jtitle=Cellulose%20(London)&rft.au=Lim,%20Jihye&rft.date=2020-03-01&rft.volume=27&rft.issue=5&rft.spage=2521&rft.epage=2528&rft.pages=2521-2528&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-019-02959-z&rft_dat=%3Cproquest_cross%3E2369255352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369255352&rft_id=info:pmid/&rfr_iscdi=true |