Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells
is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This tra...
Gespeichert in:
Veröffentlicht in: | mSphere 2020-02, Vol.5 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | mSphere |
container_volume | 5 |
creator | Cygan, Alicja M Theisen, Terence C Mendoza, Alma G Marino, Nicole D Panas, Michael W Boothroyd, John C |
description | is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the
effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in
and indicate that the process is highly complex and dependent on at least eight discrete proteins.
is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell,
establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in
-infected cells and provide additional potential drug targets. |
doi_str_mv | 10.1128/mSphere.00858-19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2368693433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb57c53858b645e2bbf85eb47a76cc35</doaj_id><sourcerecordid>2359404639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-89b6485c3cf97196d9cc2f8a48b289169b26cf7846b2c0ece8b07483087665d13</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEolXpnhWyxIbNFD8Sx9kgVdPSjlREVQYkVpbj3Mx4lOSmtsPj1_HX8DyoWla2rj-fa597suw1o2eMcfW-_zKuwcMZpapQM1Y9y465KKtZQXP-_NH-KDsNYUMpZZJLWcqX2ZHgtCyUosfZnzm6vp8GHD1YN7poosOB_HRxTT59v2Nk0cAQXesgkOXaA5DzpnFbxnTk1mMEN4Qd7gYS10CW-AvHzoTekBUOjXPk1ngTXMRxjR6nQL4ZO2EH5A7uJ-ehIS16svRmCB3afXtsyQUMAchVKk-JvWxbsBF9IG6ISK4xRDKHrguvshet6QKcHtaT7OvHy-X8enbz-WoxP7-Z2ZzTOFNVLXNVWGHbqmSVbCpreatMrmquKiarmkvbliqXNbcULKialrkSVJVSFg0TJ9lir9ug2ejRu9743xqN07sC-pU2PjrbgW7rorSFSENJPQvgdd2qAuq8NKW0VhRJ68Nea5zqHhqbDPameyL69GRwa73CH7qkgkkmk8C7g4DH-wlC1L0LNtlhBkgOay6KKqe5FFVC3_6HbnDyaXhbSipZiVyIRNE9ZT2G4KF9eAyjehs2fQib3oVNs63wm8efeLjwL1riL74n1kI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368693433</pqid></control><display><type>article</type><title>Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Cygan, Alicja M ; Theisen, Terence C ; Mendoza, Alma G ; Marino, Nicole D ; Panas, Michael W ; Boothroyd, John C</creator><creatorcontrib>Cygan, Alicja M ; Theisen, Terence C ; Mendoza, Alma G ; Marino, Nicole D ; Panas, Michael W ; Boothroyd, John C</creatorcontrib><description>is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the
effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in
and indicate that the process is highly complex and dependent on at least eight discrete proteins.
is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell,
establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in
-infected cells and provide additional potential drug targets.</description><identifier>ISSN: 2379-5042</identifier><identifier>EISSN: 2379-5042</identifier><identifier>DOI: 10.1128/mSphere.00858-19</identifier><identifier>PMID: 32075880</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Antigens, Protozoan - genetics ; Antigens, Protozoan - metabolism ; c-Myc protein ; Cells, Cultured ; Cyclin E - genetics ; Cyclin E - metabolism ; Cytosol ; Cytosol - metabolism ; Datasets ; Editor's Pick ; Effector cells ; Host-Microbe Biology ; Host-Pathogen Interactions ; Humans ; Immunoprecipitation ; Intracellular ; Kinases ; Mass spectrometry ; Myc protein ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; Parasites ; parasitology ; Parasitophorous vacuole ; Peptides ; protein export ; Protein purification ; Protein Transport ; Proteins ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Protozoa ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Scientific imaging ; Therapeutic targets ; Toxoplasma ; Toxoplasma - genetics ; Toxoplasma - metabolism ; Toxoplasma - pathogenicity ; Toxoplasma gondii ; Vacuoles - metabolism ; Vacuoles - parasitology ; Virulence ; Virulence Factors - genetics ; Virulence Factors - metabolism</subject><ispartof>mSphere, 2020-02, Vol.5 (1)</ispartof><rights>Copyright © 2020 Cygan et al.</rights><rights>Copyright © 2020 Cygan et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Cygan et al. 2020 Cygan et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-89b6485c3cf97196d9cc2f8a48b289169b26cf7846b2c0ece8b07483087665d13</citedby><cites>FETCH-LOGICAL-c420t-89b6485c3cf97196d9cc2f8a48b289169b26cf7846b2c0ece8b07483087665d13</cites><orcidid>0000-0002-2973-736X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32075880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cygan, Alicja M</creatorcontrib><creatorcontrib>Theisen, Terence C</creatorcontrib><creatorcontrib>Mendoza, Alma G</creatorcontrib><creatorcontrib>Marino, Nicole D</creatorcontrib><creatorcontrib>Panas, Michael W</creatorcontrib><creatorcontrib>Boothroyd, John C</creatorcontrib><title>Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells</title><title>mSphere</title><addtitle>mSphere</addtitle><description>is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the
effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in
and indicate that the process is highly complex and dependent on at least eight discrete proteins.
is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell,
establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in
-infected cells and provide additional potential drug targets.</description><subject>Antigens, Protozoan - genetics</subject><subject>Antigens, Protozoan - metabolism</subject><subject>c-Myc protein</subject><subject>Cells, Cultured</subject><subject>Cyclin E - genetics</subject><subject>Cyclin E - metabolism</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Datasets</subject><subject>Editor's Pick</subject><subject>Effector cells</subject><subject>Host-Microbe Biology</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Myc protein</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>Parasites</subject><subject>parasitology</subject><subject>Parasitophorous vacuole</subject><subject>Peptides</subject><subject>protein export</subject><subject>Protein purification</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Protozoa</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Therapeutic targets</subject><subject>Toxoplasma</subject><subject>Toxoplasma - genetics</subject><subject>Toxoplasma - metabolism</subject><subject>Toxoplasma - pathogenicity</subject><subject>Toxoplasma gondii</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - parasitology</subject><subject>Virulence</subject><subject>Virulence Factors - genetics</subject><subject>Virulence Factors - metabolism</subject><issn>2379-5042</issn><issn>2379-5042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEolXpnhWyxIbNFD8Sx9kgVdPSjlREVQYkVpbj3Mx4lOSmtsPj1_HX8DyoWla2rj-fa597suw1o2eMcfW-_zKuwcMZpapQM1Y9y465KKtZQXP-_NH-KDsNYUMpZZJLWcqX2ZHgtCyUosfZnzm6vp8GHD1YN7poosOB_HRxTT59v2Nk0cAQXesgkOXaA5DzpnFbxnTk1mMEN4Qd7gYS10CW-AvHzoTekBUOjXPk1ngTXMRxjR6nQL4ZO2EH5A7uJ-ehIS16svRmCB3afXtsyQUMAchVKk-JvWxbsBF9IG6ISK4xRDKHrguvshet6QKcHtaT7OvHy-X8enbz-WoxP7-Z2ZzTOFNVLXNVWGHbqmSVbCpreatMrmquKiarmkvbliqXNbcULKialrkSVJVSFg0TJ9lir9ug2ejRu9743xqN07sC-pU2PjrbgW7rorSFSENJPQvgdd2qAuq8NKW0VhRJ68Nea5zqHhqbDPameyL69GRwa73CH7qkgkkmk8C7g4DH-wlC1L0LNtlhBkgOay6KKqe5FFVC3_6HbnDyaXhbSipZiVyIRNE9ZT2G4KF9eAyjehs2fQib3oVNs63wm8efeLjwL1riL74n1kI</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Cygan, Alicja M</creator><creator>Theisen, Terence C</creator><creator>Mendoza, Alma G</creator><creator>Marino, Nicole D</creator><creator>Panas, Michael W</creator><creator>Boothroyd, John C</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2973-736X</orcidid></search><sort><creationdate>20200219</creationdate><title>Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells</title><author>Cygan, Alicja M ; Theisen, Terence C ; Mendoza, Alma G ; Marino, Nicole D ; Panas, Michael W ; Boothroyd, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-89b6485c3cf97196d9cc2f8a48b289169b26cf7846b2c0ece8b07483087665d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antigens, Protozoan - genetics</topic><topic>Antigens, Protozoan - metabolism</topic><topic>c-Myc protein</topic><topic>Cells, Cultured</topic><topic>Cyclin E - genetics</topic><topic>Cyclin E - metabolism</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Datasets</topic><topic>Editor's Pick</topic><topic>Effector cells</topic><topic>Host-Microbe Biology</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Myc protein</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>Parasites</topic><topic>parasitology</topic><topic>Parasitophorous vacuole</topic><topic>Peptides</topic><topic>protein export</topic><topic>Protein purification</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Protozoa</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Therapeutic targets</topic><topic>Toxoplasma</topic><topic>Toxoplasma - genetics</topic><topic>Toxoplasma - metabolism</topic><topic>Toxoplasma - pathogenicity</topic><topic>Toxoplasma gondii</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - parasitology</topic><topic>Virulence</topic><topic>Virulence Factors - genetics</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cygan, Alicja M</creatorcontrib><creatorcontrib>Theisen, Terence C</creatorcontrib><creatorcontrib>Mendoza, Alma G</creatorcontrib><creatorcontrib>Marino, Nicole D</creatorcontrib><creatorcontrib>Panas, Michael W</creatorcontrib><creatorcontrib>Boothroyd, John C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>mSphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cygan, Alicja M</au><au>Theisen, Terence C</au><au>Mendoza, Alma G</au><au>Marino, Nicole D</au><au>Panas, Michael W</au><au>Boothroyd, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells</atitle><jtitle>mSphere</jtitle><addtitle>mSphere</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><issn>2379-5042</issn><eissn>2379-5042</eissn><abstract>is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the
effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in
and indicate that the process is highly complex and dependent on at least eight discrete proteins.
is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell,
establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in
-infected cells and provide additional potential drug targets.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>32075880</pmid><doi>10.1128/mSphere.00858-19</doi><orcidid>https://orcid.org/0000-0002-2973-736X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-5042 |
ispartof | mSphere, 2020-02, Vol.5 (1) |
issn | 2379-5042 2379-5042 |
language | eng |
recordid | cdi_proquest_journals_2368693433 |
source | American Society for Microbiology; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Antigens, Protozoan - genetics Antigens, Protozoan - metabolism c-Myc protein Cells, Cultured Cyclin E - genetics Cyclin E - metabolism Cytosol Cytosol - metabolism Datasets Editor's Pick Effector cells Host-Microbe Biology Host-Pathogen Interactions Humans Immunoprecipitation Intracellular Kinases Mass spectrometry Myc protein Oncogene Proteins - genetics Oncogene Proteins - metabolism Parasites parasitology Parasitophorous vacuole Peptides protein export Protein purification Protein Transport Proteins Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Protozoa Protozoan Proteins - genetics Protozoan Proteins - metabolism Scientific imaging Therapeutic targets Toxoplasma Toxoplasma - genetics Toxoplasma - metabolism Toxoplasma - pathogenicity Toxoplasma gondii Vacuoles - metabolism Vacuoles - parasitology Virulence Virulence Factors - genetics Virulence Factors - metabolism |
title | Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coimmunoprecipitation%20with%20MYR1%20Identifies%20Three%20Additional%20Proteins%20within%20the%20Toxoplasma%20gondii%20Parasitophorous%20Vacuole%20Required%20for%20Translocation%20of%20Dense%20Granule%20Effectors%20into%20Host%20Cells&rft.jtitle=mSphere&rft.au=Cygan,%20Alicja%20M&rft.date=2020-02-19&rft.volume=5&rft.issue=1&rft.issn=2379-5042&rft.eissn=2379-5042&rft_id=info:doi/10.1128/mSphere.00858-19&rft_dat=%3Cproquest_doaj_%3E2359404639%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368693433&rft_id=info:pmid/32075880&rft_doaj_id=oai_doaj_org_article_fb57c53858b645e2bbf85eb47a76cc35&rfr_iscdi=true |