Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model

Based on the tan ( Φ ( ξ ) / 2 ) -expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2020, Vol.90 (1), p.67-86
Hauptverfasser: Manafian, Jalil, Farshbaf Zinati, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 67
container_title Proceedings of the National Academy of Sciences, India, Section A, physical sciences
container_volume 90
creator Manafian, Jalil
Farshbaf Zinati, Reza
description Based on the tan ( Φ ( ξ ) / 2 ) -expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.
doi_str_mv 10.1007/s40010-018-0550-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2368665963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368665963</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1412-cd1c91c2a5789ebf070d43c69a09c0e0d469720fecf7fe4c661723f6d4d301013</originalsourceid><addsrcrecordid>eNpFkM9KAzEQxoMoWLQP4C3gpT3ETpLdZHMsxX9Q8KLnJWYTuyVN1s1W9IV8DB-hz2SWCuYwmWG--Zj5IXRF4YYCyEUqACgQoBWBsgTCTtCEsZxQKdgpmgAXilQM-DmaprSF_EqpmCgmqF52nW-NHtoYcHR40GF2-J4dfuYLNif2s9Mhja2dHTaxwUPEKfoPm-PO4hCDb4PVPXa9NqOF9rjbfKVs6PEuNtZfojOnfbLTv_8CvdzdPq8eyPrp_nG1XJOOFpQR01CjqGG6lJWyrw4kNAU3QmlQBmwuhJIMnDVOOlsYIahk3ImmaHg-nfILdH307fr4vrdpqLdx3-d9Us24qIQoleBZxY6q1PVteLP9v4pCPbKsjyzrzLIeWebpX_UJZ84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368665963</pqid></control><display><type>article</type><title>Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manafian, Jalil ; Farshbaf Zinati, Reza</creator><creatorcontrib>Manafian, Jalil ; Farshbaf Zinati, Reza</creatorcontrib><description>Based on the tan ( Φ ( ξ ) / 2 ) -expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.</description><identifier>ISSN: 0369-8203</identifier><identifier>EISSN: 2250-1762</identifier><identifier>DOI: 10.1007/s40010-018-0550-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applied and Technical Physics ; Atomic ; Differential equations ; Exact solutions ; Hyperbolic functions ; Mathematical models ; Molecular ; Nonlinear equations ; Optical and Plasma Physics ; Ordinary differential equations ; Physics ; Physics and Astronomy ; Quantum Physics ; Rational functions ; Research Article ; Trigonometric functions</subject><ispartof>Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2020, Vol.90 (1), p.67-86</ispartof><rights>The National Academy of Sciences, India 2018</rights><rights>2018© The National Academy of Sciences, India 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1412-cd1c91c2a5789ebf070d43c69a09c0e0d469720fecf7fe4c661723f6d4d301013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40010-018-0550-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40010-018-0550-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Manafian, Jalil</creatorcontrib><creatorcontrib>Farshbaf Zinati, Reza</creatorcontrib><title>Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model</title><title>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</title><addtitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</addtitle><description>Based on the tan ( Φ ( ξ ) / 2 ) -expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Hyperbolic functions</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Rational functions</subject><subject>Research Article</subject><subject>Trigonometric functions</subject><issn>0369-8203</issn><issn>2250-1762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM9KAzEQxoMoWLQP4C3gpT3ETpLdZHMsxX9Q8KLnJWYTuyVN1s1W9IV8DB-hz2SWCuYwmWG--Zj5IXRF4YYCyEUqACgQoBWBsgTCTtCEsZxQKdgpmgAXilQM-DmaprSF_EqpmCgmqF52nW-NHtoYcHR40GF2-J4dfuYLNif2s9Mhja2dHTaxwUPEKfoPm-PO4hCDb4PVPXa9NqOF9rjbfKVs6PEuNtZfojOnfbLTv_8CvdzdPq8eyPrp_nG1XJOOFpQR01CjqGG6lJWyrw4kNAU3QmlQBmwuhJIMnDVOOlsYIahk3ImmaHg-nfILdH307fr4vrdpqLdx3-d9Us24qIQoleBZxY6q1PVteLP9v4pCPbKsjyzrzLIeWebpX_UJZ84</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Manafian, Jalil</creator><creator>Farshbaf Zinati, Reza</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model</title><author>Manafian, Jalil ; Farshbaf Zinati, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1412-cd1c91c2a5789ebf070d43c69a09c0e0d469720fecf7fe4c661723f6d4d301013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Hyperbolic functions</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Rational functions</topic><topic>Research Article</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manafian, Jalil</creatorcontrib><creatorcontrib>Farshbaf Zinati, Reza</creatorcontrib><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manafian, Jalil</au><au>Farshbaf Zinati, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model</atitle><jtitle>Proceedings of the National Academy of Sciences, India, Section A, physical sciences</jtitle><stitle>Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci</stitle><date>2020</date><risdate>2020</risdate><volume>90</volume><issue>1</issue><spage>67</spage><epage>86</epage><pages>67-86</pages><issn>0369-8203</issn><eissn>2250-1762</eissn><abstract>Based on the tan ( Φ ( ξ ) / 2 ) -expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40010-018-0550-2</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0369-8203
ispartof Proceedings of the National Academy of Sciences, India, Section A, physical sciences, 2020, Vol.90 (1), p.67-86
issn 0369-8203
2250-1762
language eng
recordid cdi_proquest_journals_2368665963
source SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Atomic
Differential equations
Exact solutions
Hyperbolic functions
Mathematical models
Molecular
Nonlinear equations
Optical and Plasma Physics
Ordinary differential equations
Physics
Physics and Astronomy
Quantum Physics
Rational functions
Research Article
Trigonometric functions
title Application of tan(Φ(ξ)/2)-expansion method to solve some nonlinear fractional physical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20tan(%CE%A6(%CE%BE)/2)-expansion%20method%20to%20solve%20some%20nonlinear%20fractional%20physical%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences,%20India,%20Section%20A,%20physical%20sciences&rft.au=Manafian,%20Jalil&rft.date=2020&rft.volume=90&rft.issue=1&rft.spage=67&rft.epage=86&rft.pages=67-86&rft.issn=0369-8203&rft.eissn=2250-1762&rft_id=info:doi/10.1007/s40010-018-0550-2&rft_dat=%3Cproquest_sprin%3E2368665963%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368665963&rft_id=info:pmid/&rfr_iscdi=true