Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features
The current paper deals with the role of Cattaneo–Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier’s law which predicts the thermal relaxation characteristics. Two disparate...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2020-03, Vol.139 (5), p.3185-3195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3195 |
---|---|
container_issue | 5 |
container_start_page | 3185 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 139 |
creator | Ahmed, Jawad Khan, Masood Ahmad, Latif |
description | The current paper deals with the role of Cattaneo–Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier’s law which predicts the thermal relaxation characteristics. Two disparate situations, such as when the direction of rotation of both disks is same and opposite, are addressed. The system of nonlinear ordinary differential equations narrating momentum, energy and concentration equations is obtained with the transformations executed by von Kármán. A finite difference algorithm-based scheme, namely bvp4c, is implemented for numerical solution. The graphical and tabular trends for radial, azimuthal and axial flows as well as temperature and concentration fields are displayed against various pertinent parameters. The significant outcomes reveal that the impact of Deborah number is to decrease the velocity components in all directions. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a decrease in fluid concentration is observed with increasing homogeneous–heterogeneous reactions parameters. |
doi_str_mv | 10.1007/s10973-019-08712-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2368665907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615858204</galeid><sourcerecordid>A615858204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-5b5edd90d8aa77a8f035fc1ff31b6dddd0114941099f7fd03d30c02f4596b5463</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqXwAqwssWKRMo7z52VVlVKpCKm0a8s3Hue65NoX22nKjjdgwRvyJAwNqOoGW7JnrO-MR3OK4jWHIw7QvUscZCdK4LKEvuNVKZ8UB7zp-7KSVfuUYkFxyxt4XrxI6QYApAR-UPw4tRaH7G7RY0osWLYNuzBSFub06_vPLWaM_3IWURMbfGLOs4_6bsFpYnaanaEzLGyDeUH0LC-Bpb2LenJ-ZMalL4ktLm-Z2-1juEXDtqgzG4I3831BZimfI6aXxTOrp4Sv_t6HxfX706uTD-XFp7Pzk-OLcqgrmctm06AxEkyvddfp3oJo7MCtFXzTGlrAeS1rmoq0nTUgjIABKls3st00dSsOizdrXern64wpq5swR09fqkq0fds2EjqijlZq1BMq523IUQ-0De4cdY_W0fsxzbVv-gpqErx9JCAm410e9ZySOv98-ZitVnaIIaWIVu2j2-n4TXFQf1xVq6uKXFX3ripJIrGKEsF-xPjQ939UvwGFNaki</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368665907</pqid></control><display><type>article</type><title>Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features</title><source>Springer Nature - Complete Springer Journals</source><creator>Ahmed, Jawad ; Khan, Masood ; Ahmad, Latif</creator><creatorcontrib>Ahmed, Jawad ; Khan, Masood ; Ahmad, Latif</creatorcontrib><description>The current paper deals with the role of Cattaneo–Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier’s law which predicts the thermal relaxation characteristics. Two disparate situations, such as when the direction of rotation of both disks is same and opposite, are addressed. The system of nonlinear ordinary differential equations narrating momentum, energy and concentration equations is obtained with the transformations executed by von Kármán. A finite difference algorithm-based scheme, namely bvp4c, is implemented for numerical solution. The graphical and tabular trends for radial, azimuthal and axial flows as well as temperature and concentration fields are displayed against various pertinent parameters. The significant outcomes reveal that the impact of Deborah number is to decrease the velocity components in all directions. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a decrease in fluid concentration is observed with increasing homogeneous–heterogeneous reactions parameters.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08712-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Analytical Chemistry ; Axial flow ; Axisymmetric flow ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Conduction heating ; Conduction model ; Conductive heat transfer ; Deborah number ; Differential equations ; Finite difference method ; Fluid flow ; Fourier law ; Heat flux ; Inorganic Chemistry ; Laws, regulations and rules ; Mathematical models ; Maxwell fluids ; Measurement Science and Instrumentation ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Physical Chemistry ; Polymer Sciences ; Relaxation time ; Rotating disks ; Temperature distribution ; Thermal relaxation</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3185-3195</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-5b5edd90d8aa77a8f035fc1ff31b6dddd0114941099f7fd03d30c02f4596b5463</citedby><cites>FETCH-LOGICAL-c429t-5b5edd90d8aa77a8f035fc1ff31b6dddd0114941099f7fd03d30c02f4596b5463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-08712-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-08712-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ahmed, Jawad</creatorcontrib><creatorcontrib>Khan, Masood</creatorcontrib><creatorcontrib>Ahmad, Latif</creatorcontrib><title>Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The current paper deals with the role of Cattaneo–Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier’s law which predicts the thermal relaxation characteristics. Two disparate situations, such as when the direction of rotation of both disks is same and opposite, are addressed. The system of nonlinear ordinary differential equations narrating momentum, energy and concentration equations is obtained with the transformations executed by von Kármán. A finite difference algorithm-based scheme, namely bvp4c, is implemented for numerical solution. The graphical and tabular trends for radial, azimuthal and axial flows as well as temperature and concentration fields are displayed against various pertinent parameters. The significant outcomes reveal that the impact of Deborah number is to decrease the velocity components in all directions. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a decrease in fluid concentration is observed with increasing homogeneous–heterogeneous reactions parameters.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Axial flow</subject><subject>Axisymmetric flow</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Conduction heating</subject><subject>Conduction model</subject><subject>Conductive heat transfer</subject><subject>Deborah number</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Fourier law</subject><subject>Heat flux</subject><subject>Inorganic Chemistry</subject><subject>Laws, regulations and rules</subject><subject>Mathematical models</subject><subject>Maxwell fluids</subject><subject>Measurement Science and Instrumentation</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Relaxation time</subject><subject>Rotating disks</subject><subject>Temperature distribution</subject><subject>Thermal relaxation</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEqXwAqwssWKRMo7z52VVlVKpCKm0a8s3Hue65NoX22nKjjdgwRvyJAwNqOoGW7JnrO-MR3OK4jWHIw7QvUscZCdK4LKEvuNVKZ8UB7zp-7KSVfuUYkFxyxt4XrxI6QYApAR-UPw4tRaH7G7RY0osWLYNuzBSFub06_vPLWaM_3IWURMbfGLOs4_6bsFpYnaanaEzLGyDeUH0LC-Bpb2LenJ-ZMalL4ktLm-Z2-1juEXDtqgzG4I3831BZimfI6aXxTOrp4Sv_t6HxfX706uTD-XFp7Pzk-OLcqgrmctm06AxEkyvddfp3oJo7MCtFXzTGlrAeS1rmoq0nTUgjIABKls3st00dSsOizdrXern64wpq5swR09fqkq0fds2EjqijlZq1BMq523IUQ-0De4cdY_W0fsxzbVv-gpqErx9JCAm410e9ZySOv98-ZitVnaIIaWIVu2j2-n4TXFQf1xVq6uKXFX3ripJIrGKEsF-xPjQ939UvwGFNaki</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ahmed, Jawad</creator><creator>Khan, Masood</creator><creator>Ahmad, Latif</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features</title><author>Ahmed, Jawad ; Khan, Masood ; Ahmad, Latif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-5b5edd90d8aa77a8f035fc1ff31b6dddd0114941099f7fd03d30c02f4596b5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Axial flow</topic><topic>Axisymmetric flow</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Conduction heating</topic><topic>Conduction model</topic><topic>Conductive heat transfer</topic><topic>Deborah number</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Fourier law</topic><topic>Heat flux</topic><topic>Inorganic Chemistry</topic><topic>Laws, regulations and rules</topic><topic>Mathematical models</topic><topic>Maxwell fluids</topic><topic>Measurement Science and Instrumentation</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Relaxation time</topic><topic>Rotating disks</topic><topic>Temperature distribution</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Jawad</creatorcontrib><creatorcontrib>Khan, Masood</creatorcontrib><creatorcontrib>Ahmad, Latif</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Jawad</au><au>Khan, Masood</au><au>Ahmad, Latif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>139</volume><issue>5</issue><spage>3185</spage><epage>3195</epage><pages>3185-3195</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The current paper deals with the role of Cattaneo–Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier’s law which predicts the thermal relaxation characteristics. Two disparate situations, such as when the direction of rotation of both disks is same and opposite, are addressed. The system of nonlinear ordinary differential equations narrating momentum, energy and concentration equations is obtained with the transformations executed by von Kármán. A finite difference algorithm-based scheme, namely bvp4c, is implemented for numerical solution. The graphical and tabular trends for radial, azimuthal and axial flows as well as temperature and concentration fields are displayed against various pertinent parameters. The significant outcomes reveal that the impact of Deborah number is to decrease the velocity components in all directions. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a decrease in fluid concentration is observed with increasing homogeneous–heterogeneous reactions parameters.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08712-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3185-3195 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2368665907 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Analytical Chemistry Axial flow Axisymmetric flow Chemistry Chemistry and Materials Science Computational fluid dynamics Conduction heating Conduction model Conductive heat transfer Deborah number Differential equations Finite difference method Fluid flow Fourier law Heat flux Inorganic Chemistry Laws, regulations and rules Mathematical models Maxwell fluids Measurement Science and Instrumentation Nonlinear differential equations Nonlinear equations Ordinary differential equations Parameters Physical Chemistry Polymer Sciences Relaxation time Rotating disks Temperature distribution Thermal relaxation |
title | Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectiveness%20of%20homogeneous%E2%80%93heterogeneous%20reactions%20in%20Maxwell%20fluid%20flow%20between%20two%20spiraling%20disks%20with%20improved%20heat%20conduction%20features&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ahmed,%20Jawad&rft.date=2020-03-01&rft.volume=139&rft.issue=5&rft.spage=3185&rft.epage=3195&rft.pages=3185-3195&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08712-9&rft_dat=%3Cgale_proqu%3EA615858204%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368665907&rft_id=info:pmid/&rft_galeid=A615858204&rfr_iscdi=true |