Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design
In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both q...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2020-03, Vol.139 (5), p.3151-3164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3164 |
---|---|
container_issue | 5 |
container_start_page | 3151 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 139 |
creator | Miansari, Mehdi Valipour, Mohammad Ali Arasteh, Hossein Toghraie, Davood |
description | In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm. |
doi_str_mv | 10.1007/s10973-019-08653-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2368664279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615858213</galeid><sourcerecordid>A615858213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1poGmaP5CToKcenEqWLUvHENI2ECi0yVlo5ZFXwSttJbnEOfeHd3YdKLkUHTSMvvcYzauqC0YvGaX958yo6nlNmaqpFB2v-ZvqlHVS1o1qxFusOdaCdfRd9T7nR0qpUpSdVn9uAqRxISYMBJ5eSjMt2edjL-6L3_lnU3wMJDqyhclbM00LGVOMv2EgGVvTkS3zBhAwBZ3s1oQRUiabhczZh5Hcm3G2W49ve0h-B6GYiQyQ_Rg-VCfOTBnOX-6z6uHLzf31t_ru-9fb66u72raNKnVHW0MH6K1sBFghLNhW2I7K3ql2w-xgRM-VGhxjRoGQnDnHOytbgLaTTcfPqo-r7z7FXzPkoh_jnPC7WTdcSCHapldIXa7UaCbQPrhYkrF4Bth5GwM4j_0rXKZEV8ZR8OmVAJkCT2U0c8769ueP12yzsjbFnBM4vcdlmLRoRvUhSr1GqTFKfYxSH0R8FWWED2v9N_d_VH8BWTyiwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368664279</pqid></control><display><type>article</type><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><source>SpringerLink Journals</source><creator>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</creator><creatorcontrib>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</creatorcontrib><description>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08653-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Coils ; Cold flow ; Computational fluid dynamics ; Design of experiments ; Equipment and supplies ; Exergy ; Flow velocity ; Fluid flow ; Grooves ; Heat exchangers ; Heating ; Inlet temperature ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Optimization ; Physical Chemistry ; Polymer Sciences ; Pressure drop ; Qualitative analysis ; Repair & maintenance ; Shell and tube ; Thermodynamic efficiency ; Tube heat exchangers</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3151-3164</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</citedby><cites>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-08653-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-08653-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Miansari, Mehdi</creatorcontrib><creatorcontrib>Valipour, Mohammad Ali</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Toghraie, Davood</creatorcontrib><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coils</subject><subject>Cold flow</subject><subject>Computational fluid dynamics</subject><subject>Design of experiments</subject><subject>Equipment and supplies</subject><subject>Exergy</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Grooves</subject><subject>Heat exchangers</subject><subject>Heating</subject><subject>Inlet temperature</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Qualitative analysis</subject><subject>Repair & maintenance</subject><subject>Shell and tube</subject><subject>Thermodynamic efficiency</subject><subject>Tube heat exchangers</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhU1poGmaP5CToKcenEqWLUvHENI2ECi0yVlo5ZFXwSttJbnEOfeHd3YdKLkUHTSMvvcYzauqC0YvGaX958yo6nlNmaqpFB2v-ZvqlHVS1o1qxFusOdaCdfRd9T7nR0qpUpSdVn9uAqRxISYMBJ5eSjMt2edjL-6L3_lnU3wMJDqyhclbM00LGVOMv2EgGVvTkS3zBhAwBZ3s1oQRUiabhczZh5Hcm3G2W49ve0h-B6GYiQyQ_Rg-VCfOTBnOX-6z6uHLzf31t_ru-9fb66u72raNKnVHW0MH6K1sBFghLNhW2I7K3ql2w-xgRM-VGhxjRoGQnDnHOytbgLaTTcfPqo-r7z7FXzPkoh_jnPC7WTdcSCHapldIXa7UaCbQPrhYkrF4Bth5GwM4j_0rXKZEV8ZR8OmVAJkCT2U0c8769ueP12yzsjbFnBM4vcdlmLRoRvUhSr1GqTFKfYxSH0R8FWWED2v9N_d_VH8BWTyiwA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Miansari, Mehdi</creator><creator>Valipour, Mohammad Ali</creator><creator>Arasteh, Hossein</creator><creator>Toghraie, Davood</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><author>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coils</topic><topic>Cold flow</topic><topic>Computational fluid dynamics</topic><topic>Design of experiments</topic><topic>Equipment and supplies</topic><topic>Exergy</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Grooves</topic><topic>Heat exchangers</topic><topic>Heating</topic><topic>Inlet temperature</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Qualitative analysis</topic><topic>Repair & maintenance</topic><topic>Shell and tube</topic><topic>Thermodynamic efficiency</topic><topic>Tube heat exchangers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miansari, Mehdi</creatorcontrib><creatorcontrib>Valipour, Mohammad Ali</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Toghraie, Davood</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miansari, Mehdi</au><au>Valipour, Mohammad Ali</au><au>Arasteh, Hossein</au><au>Toghraie, Davood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>139</volume><issue>5</issue><spage>3151</spage><epage>3164</epage><pages>3151-3164</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08653-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3151-3164 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2368664279 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Chemistry Chemistry and Materials Science Coils Cold flow Computational fluid dynamics Design of experiments Equipment and supplies Exergy Flow velocity Fluid flow Grooves Heat exchangers Heating Inlet temperature Inorganic Chemistry Measurement Science and Instrumentation Optimization Physical Chemistry Polymer Sciences Pressure drop Qualitative analysis Repair & maintenance Shell and tube Thermodynamic efficiency Tube heat exchangers |
title | Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20and%20exergy%20analysis%20and%20optimization%20of%20helically%20grooved%20shell%20and%20tube%20heat%20exchangers%20by%20using%20Taguchi%20experimental%20design&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Miansari,%20Mehdi&rft.date=2020-03-01&rft.volume=139&rft.issue=5&rft.spage=3151&rft.epage=3164&rft.pages=3151-3164&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08653-3&rft_dat=%3Cgale_proqu%3EA615858213%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368664279&rft_id=info:pmid/&rft_galeid=A615858213&rfr_iscdi=true |