Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design

In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2020-03, Vol.139 (5), p.3151-3164
Hauptverfasser: Miansari, Mehdi, Valipour, Mohammad Ali, Arasteh, Hossein, Toghraie, Davood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3164
container_issue 5
container_start_page 3151
container_title Journal of thermal analysis and calorimetry
container_volume 139
creator Miansari, Mehdi
Valipour, Mohammad Ali
Arasteh, Hossein
Toghraie, Davood
description In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.
doi_str_mv 10.1007/s10973-019-08653-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2368664279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615858213</galeid><sourcerecordid>A615858213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1poGmaP5CToKcenEqWLUvHENI2ECi0yVlo5ZFXwSttJbnEOfeHd3YdKLkUHTSMvvcYzauqC0YvGaX958yo6nlNmaqpFB2v-ZvqlHVS1o1qxFusOdaCdfRd9T7nR0qpUpSdVn9uAqRxISYMBJ5eSjMt2edjL-6L3_lnU3wMJDqyhclbM00LGVOMv2EgGVvTkS3zBhAwBZ3s1oQRUiabhczZh5Hcm3G2W49ve0h-B6GYiQyQ_Rg-VCfOTBnOX-6z6uHLzf31t_ru-9fb66u72raNKnVHW0MH6K1sBFghLNhW2I7K3ql2w-xgRM-VGhxjRoGQnDnHOytbgLaTTcfPqo-r7z7FXzPkoh_jnPC7WTdcSCHapldIXa7UaCbQPrhYkrF4Bth5GwM4j_0rXKZEV8ZR8OmVAJkCT2U0c8769ueP12yzsjbFnBM4vcdlmLRoRvUhSr1GqTFKfYxSH0R8FWWED2v9N_d_VH8BWTyiwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368664279</pqid></control><display><type>article</type><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><source>SpringerLink Journals</source><creator>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</creator><creatorcontrib>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</creatorcontrib><description>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08653-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Coils ; Cold flow ; Computational fluid dynamics ; Design of experiments ; Equipment and supplies ; Exergy ; Flow velocity ; Fluid flow ; Grooves ; Heat exchangers ; Heating ; Inlet temperature ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Optimization ; Physical Chemistry ; Polymer Sciences ; Pressure drop ; Qualitative analysis ; Repair &amp; maintenance ; Shell and tube ; Thermodynamic efficiency ; Tube heat exchangers</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3151-3164</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</citedby><cites>FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-08653-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-08653-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Miansari, Mehdi</creatorcontrib><creatorcontrib>Valipour, Mohammad Ali</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Toghraie, Davood</creatorcontrib><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coils</subject><subject>Cold flow</subject><subject>Computational fluid dynamics</subject><subject>Design of experiments</subject><subject>Equipment and supplies</subject><subject>Exergy</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Grooves</subject><subject>Heat exchangers</subject><subject>Heating</subject><subject>Inlet temperature</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Qualitative analysis</subject><subject>Repair &amp; maintenance</subject><subject>Shell and tube</subject><subject>Thermodynamic efficiency</subject><subject>Tube heat exchangers</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhU1poGmaP5CToKcenEqWLUvHENI2ECi0yVlo5ZFXwSttJbnEOfeHd3YdKLkUHTSMvvcYzauqC0YvGaX958yo6nlNmaqpFB2v-ZvqlHVS1o1qxFusOdaCdfRd9T7nR0qpUpSdVn9uAqRxISYMBJ5eSjMt2edjL-6L3_lnU3wMJDqyhclbM00LGVOMv2EgGVvTkS3zBhAwBZ3s1oQRUiabhczZh5Hcm3G2W49ve0h-B6GYiQyQ_Rg-VCfOTBnOX-6z6uHLzf31t_ru-9fb66u72raNKnVHW0MH6K1sBFghLNhW2I7K3ql2w-xgRM-VGhxjRoGQnDnHOytbgLaTTcfPqo-r7z7FXzPkoh_jnPC7WTdcSCHapldIXa7UaCbQPrhYkrF4Bth5GwM4j_0rXKZEV8ZR8OmVAJkCT2U0c8769ueP12yzsjbFnBM4vcdlmLRoRvUhSr1GqTFKfYxSH0R8FWWED2v9N_d_VH8BWTyiwA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Miansari, Mehdi</creator><creator>Valipour, Mohammad Ali</creator><creator>Arasteh, Hossein</creator><creator>Toghraie, Davood</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</title><author>Miansari, Mehdi ; Valipour, Mohammad Ali ; Arasteh, Hossein ; Toghraie, Davood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-504a0de7c826ec66cec46c5087f94b1cda67399df11a9e6831ff35c84ee458253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coils</topic><topic>Cold flow</topic><topic>Computational fluid dynamics</topic><topic>Design of experiments</topic><topic>Equipment and supplies</topic><topic>Exergy</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Grooves</topic><topic>Heat exchangers</topic><topic>Heating</topic><topic>Inlet temperature</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Qualitative analysis</topic><topic>Repair &amp; maintenance</topic><topic>Shell and tube</topic><topic>Thermodynamic efficiency</topic><topic>Tube heat exchangers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miansari, Mehdi</creatorcontrib><creatorcontrib>Valipour, Mohammad Ali</creatorcontrib><creatorcontrib>Arasteh, Hossein</creatorcontrib><creatorcontrib>Toghraie, Davood</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miansari, Mehdi</au><au>Valipour, Mohammad Ali</au><au>Arasteh, Hossein</au><au>Toghraie, Davood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>139</volume><issue>5</issue><spage>3151</spage><epage>3164</epage><pages>3151-3164</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this paper, for improvement of the performance of shell and tube heat exchanger, the effect of adding circular grooves on the shell of heat exchanger is considered numerically. The grooves are created in different heights but with the same pitch of the coil. The obtained results consist of both qualitative and quantitative data affected by geometrical parameters. According to the numerical results, the groove increases the heat transfer rate up to 5% and does not affect the pressure drop dramatically. By use of Taguchi experimental design and exergy analysis, the performance of the heat exchanger is examined in different working conditions, such as different level of cold inlet temperature, cold fluid flow rate, and groove height (roughness value). The results of this consideration revealed that the heat exchanger thermal efficiency varies from 23 to 49% in various conditions and also both the flow rate and the inlet temperature have the same effect on the exergy losses. The optimum groove height is presented equally to 10 mm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08653-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-03, Vol.139 (5), p.3151-3164
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2368664279
source SpringerLink Journals
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Coils
Cold flow
Computational fluid dynamics
Design of experiments
Equipment and supplies
Exergy
Flow velocity
Fluid flow
Grooves
Heat exchangers
Heating
Inlet temperature
Inorganic Chemistry
Measurement Science and Instrumentation
Optimization
Physical Chemistry
Polymer Sciences
Pressure drop
Qualitative analysis
Repair & maintenance
Shell and tube
Thermodynamic efficiency
Tube heat exchangers
title Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20and%20exergy%20analysis%20and%20optimization%20of%20helically%20grooved%20shell%20and%20tube%20heat%20exchangers%20by%20using%20Taguchi%20experimental%20design&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Miansari,%20Mehdi&rft.date=2020-03-01&rft.volume=139&rft.issue=5&rft.spage=3151&rft.epage=3164&rft.pages=3151-3164&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08653-3&rft_dat=%3Cgale_proqu%3EA615858213%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368664279&rft_id=info:pmid/&rft_galeid=A615858213&rfr_iscdi=true