MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts
High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on droug...
Gespeichert in:
Veröffentlicht in: | Horticulture research 2020, Vol.7 (1), p.21, Article 21 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Horticulture research |
container_volume | 7 |
creator | Huo, Liuqing Sun, Xun Guo, Zijian Jia, Xin Che, Runmin Sun, Yiming Zhu, Yanfei Wang, Ping Gong, Xiaoqing Ma, Fengwang |
description | High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (
Malus domestica
) plants overexpressing
MdATG18a
with high temperature and found that autophagy protected them from heat stress. Overexpression of
MdATG18a
in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO
2
assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several
HSP
genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage. |
doi_str_mv | 10.1038/s41438-020-0243-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2368563964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368563964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-247413971dc040722ab5ff700053e7a3bc8b9b13ceab67e5db9b9eb1d51d20d23</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRCorZb-gF6QJc4p9tiOkwtSVUGLVMSlnC1_zGZTJXawsxX993i1pcCBgzXjmef3nvUIueDskjPRfSiSS9E1DFg9UjTwipwBU9Bo0O3r2rctNG3H2Sk5L-WBMcaVBKH0CTkVwCUDwc5I-hqu7m94Z2l6xIw_l4yljCnScV5yHRXqbLETXXeY57SmCbONHukY6Vq7MmAcPbXLMiF1TzSgz2jLGAca7GwHpGuifjelnJbJlrW8JW-2dip4_lw35PvnT_fXt83dt5sv11d3jVcM1gakllz0mgfPJNMA1qntVtdPKIHaCuc71zsuPFrXalSh3np0PCgegAUQG_LxyLvs3YzBY6x2J7Pkcbb5ySQ7mn83cdyZIT0azWQvqsqGvH8myOnHHstqHtI-x-rZgGg71Yq-lRXFjyifUykZty8KnJlDTOYYk6kxmUNM5mDt3d_WXl78DqUC4AgodRUHzH-k_8_6C52Nn80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368563964</pqid></control><display><type>article</type><title>MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts</title><source>SpringerOpen</source><source>Directory of Open Access Journals</source><source>Nature_OA刊</source><source>Oxford University Press Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Huo, Liuqing ; Sun, Xun ; Guo, Zijian ; Jia, Xin ; Che, Runmin ; Sun, Yiming ; Zhu, Yanfei ; Wang, Ping ; Gong, Xiaoqing ; Ma, Fengwang</creator><creatorcontrib>Huo, Liuqing ; Sun, Xun ; Guo, Zijian ; Jia, Xin ; Che, Runmin ; Sun, Yiming ; Zhu, Yanfei ; Wang, Ping ; Gong, Xiaoqing ; Ma, Fengwang</creatorcontrib><description>High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (
Malus domestica
) plants overexpressing
MdATG18a
with high temperature and found that autophagy protected them from heat stress. Overexpression of
MdATG18a
in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO
2
assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several
HSP
genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.</description><identifier>ISSN: 2662-6810</identifier><identifier>EISSN: 2052-7276</identifier><identifier>DOI: 10.1038/s41438-020-0243-2</identifier><identifier>PMID: 32140230</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/1734 ; 631/449/2661/2663 ; Abiotic factors ; Agriculture ; Antioxidants ; Apples ; Autophagy ; Biomedical and Life Sciences ; Carbon dioxide ; Chloroplasts ; Damage ; Drought resistance ; Ecology ; Electron transport ; Heat ; Heat stress ; Heat tolerance ; High temperature ; Life Sciences ; Malus domestica ; Phagocytosis ; Photochemicals ; Photosynthesis ; Photosystem II ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant growth ; Plant protection ; Plant Sciences ; Proteins ; Temperature tolerance ; Transcription ; Transgenic plants</subject><ispartof>Horticulture research, 2020, Vol.7 (1), p.21, Article 21</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-247413971dc040722ab5ff700053e7a3bc8b9b13ceab67e5db9b9eb1d51d20d23</citedby><cites>FETCH-LOGICAL-c502t-247413971dc040722ab5ff700053e7a3bc8b9b13ceab67e5db9b9eb1d51d20d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049305/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049305/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32140230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huo, Liuqing</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><creatorcontrib>Che, Runmin</creatorcontrib><creatorcontrib>Sun, Yiming</creatorcontrib><creatorcontrib>Zhu, Yanfei</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Gong, Xiaoqing</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><title>MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts</title><title>Horticulture research</title><addtitle>Hortic Res</addtitle><addtitle>Hortic Res</addtitle><description>High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (
Malus domestica
) plants overexpressing
MdATG18a
with high temperature and found that autophagy protected them from heat stress. Overexpression of
MdATG18a
in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO
2
assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several
HSP
genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.</description><subject>631/449/1734</subject><subject>631/449/2661/2663</subject><subject>Abiotic factors</subject><subject>Agriculture</subject><subject>Antioxidants</subject><subject>Apples</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Chloroplasts</subject><subject>Damage</subject><subject>Drought resistance</subject><subject>Ecology</subject><subject>Electron transport</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>High temperature</subject><subject>Life Sciences</subject><subject>Malus domestica</subject><subject>Phagocytosis</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant growth</subject><subject>Plant protection</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Temperature tolerance</subject><subject>Transcription</subject><subject>Transgenic plants</subject><issn>2662-6810</issn><issn>2052-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1v1DAQtRCorZb-gF6QJc4p9tiOkwtSVUGLVMSlnC1_zGZTJXawsxX993i1pcCBgzXjmef3nvUIueDskjPRfSiSS9E1DFg9UjTwipwBU9Bo0O3r2rctNG3H2Sk5L-WBMcaVBKH0CTkVwCUDwc5I-hqu7m94Z2l6xIw_l4yljCnScV5yHRXqbLETXXeY57SmCbONHukY6Vq7MmAcPbXLMiF1TzSgz2jLGAca7GwHpGuifjelnJbJlrW8JW-2dip4_lw35PvnT_fXt83dt5sv11d3jVcM1gakllz0mgfPJNMA1qntVtdPKIHaCuc71zsuPFrXalSh3np0PCgegAUQG_LxyLvs3YzBY6x2J7Pkcbb5ySQ7mn83cdyZIT0azWQvqsqGvH8myOnHHstqHtI-x-rZgGg71Yq-lRXFjyifUykZty8KnJlDTOYYk6kxmUNM5mDt3d_WXl78DqUC4AgodRUHzH-k_8_6C52Nn80</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Huo, Liuqing</creator><creator>Sun, Xun</creator><creator>Guo, Zijian</creator><creator>Jia, Xin</creator><creator>Che, Runmin</creator><creator>Sun, Yiming</creator><creator>Zhu, Yanfei</creator><creator>Wang, Ping</creator><creator>Gong, Xiaoqing</creator><creator>Ma, Fengwang</creator><general>Nature Publishing Group UK</general><general>Oxford University Press</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>2020</creationdate><title>MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts</title><author>Huo, Liuqing ; Sun, Xun ; Guo, Zijian ; Jia, Xin ; Che, Runmin ; Sun, Yiming ; Zhu, Yanfei ; Wang, Ping ; Gong, Xiaoqing ; Ma, Fengwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-247413971dc040722ab5ff700053e7a3bc8b9b13ceab67e5db9b9eb1d51d20d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/449/1734</topic><topic>631/449/2661/2663</topic><topic>Abiotic factors</topic><topic>Agriculture</topic><topic>Antioxidants</topic><topic>Apples</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Chloroplasts</topic><topic>Damage</topic><topic>Drought resistance</topic><topic>Ecology</topic><topic>Electron transport</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>High temperature</topic><topic>Life Sciences</topic><topic>Malus domestica</topic><topic>Phagocytosis</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant growth</topic><topic>Plant protection</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Temperature tolerance</topic><topic>Transcription</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Liuqing</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><creatorcontrib>Che, Runmin</creatorcontrib><creatorcontrib>Sun, Yiming</creatorcontrib><creatorcontrib>Zhu, Yanfei</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Gong, Xiaoqing</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Horticulture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Liuqing</au><au>Sun, Xun</au><au>Guo, Zijian</au><au>Jia, Xin</au><au>Che, Runmin</au><au>Sun, Yiming</au><au>Zhu, Yanfei</au><au>Wang, Ping</au><au>Gong, Xiaoqing</au><au>Ma, Fengwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts</atitle><jtitle>Horticulture research</jtitle><stitle>Hortic Res</stitle><addtitle>Hortic Res</addtitle><date>2020</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>21</spage><pages>21-</pages><artnum>21</artnum><issn>2662-6810</issn><eissn>2052-7276</eissn><abstract>High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (
Malus domestica
) plants overexpressing
MdATG18a
with high temperature and found that autophagy protected them from heat stress. Overexpression of
MdATG18a
in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO
2
assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several
HSP
genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32140230</pmid><doi>10.1038/s41438-020-0243-2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-6810 |
ispartof | Horticulture research, 2020, Vol.7 (1), p.21, Article 21 |
issn | 2662-6810 2052-7276 |
language | eng |
recordid | cdi_proquest_journals_2368563964 |
source | SpringerOpen; Directory of Open Access Journals; Nature_OA刊; Oxford University Press Open Access; PubMed Central; EZB Electronic Journals Library |
subjects | 631/449/1734 631/449/2661/2663 Abiotic factors Agriculture Antioxidants Apples Autophagy Biomedical and Life Sciences Carbon dioxide Chloroplasts Damage Drought resistance Ecology Electron transport Heat Heat stress Heat tolerance High temperature Life Sciences Malus domestica Phagocytosis Photochemicals Photosynthesis Photosystem II Plant Breeding/Biotechnology Plant Genetics and Genomics Plant growth Plant protection Plant Sciences Proteins Temperature tolerance Transcription Transgenic plants |
title | MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MdATG18a%20overexpression%20improves%20basal%20thermotolerance%20in%20transgenic%20apple%20by%20decreasing%20damage%20to%20chloroplasts&rft.jtitle=Horticulture%20research&rft.au=Huo,%20Liuqing&rft.date=2020&rft.volume=7&rft.issue=1&rft.spage=21&rft.pages=21-&rft.artnum=21&rft.issn=2662-6810&rft.eissn=2052-7276&rft_id=info:doi/10.1038/s41438-020-0243-2&rft_dat=%3Cproquest_pubme%3E2368563964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368563964&rft_id=info:pmid/32140230&rfr_iscdi=true |