Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories
Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recog...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-03, Vol.67 (3), p.939-950 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 3 |
container_start_page | 939 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 67 |
creator | Luo, Qiwu Fang, Xiaoxin Sun, Yichuang Ai, Jiaqiu Yang, Chunhua |
description | Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories. |
doi_str_mv | 10.1109/TCSI.2019.2960015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2368180315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8949460</ieee_id><sourcerecordid>2368180315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx2428Vb6YQu1Cm3xGNLNrN3abmqSIv57d2nxNMPwvDPMg9A9JT1KiXpaDhbTHiNU9ZgShNDsAnVolsmESCIu2z5VieRMXqObELaEMEU47aDVAnZlMgPj66r-xBMX8dBEg9892KqIlauf8ccGPOBRsXF4EU0EPIf44_wXfgWIAc_78yEe70zYNIO98xWEW3RVml2Au3PtotV4tBxMktnby3TQnyUF5yImIk8VUWsLGSdrUFJmlOXWUmrSIuWlLQTNhRGlZQ3Oy7VUuciYJdYQxqSgvIseT3sP3n0fIUS9dUdfNyc140JS2fyYNRQ9UYV3IXgo9cFXe-N_NSW6tadbe7q1p8_2mszDKVMBwD8vVapSQfgfWT5oyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368180315</pqid></control><display><type>article</type><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</creator><creatorcontrib>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</creatorcontrib><description>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2960015</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Convergence ; echo state network (ESN) ; Flash memories ; Flash memory (computers) ; Garbage collection ; hot data prediction ; NAND flash memory ; Neurons ; Particle swarm optimization ; Regularization ; Reliability ; Reservoirs ; Scaling factors ; solid state disk (SSD) ; Sun</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2020-03, Vol.67 (3), p.939-950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</citedby><cites>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</cites><orcidid>0000-0001-7923-0172 ; 0000-0003-2822-5538 ; 0000-0001-8352-2119 ; 0000-0003-2550-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8949460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8949460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Qiwu</creatorcontrib><creatorcontrib>Fang, Xiaoxin</creatorcontrib><creatorcontrib>Sun, Yichuang</creatorcontrib><creatorcontrib>Ai, Jiaqiu</creatorcontrib><creatorcontrib>Yang, Chunhua</creatorcontrib><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</description><subject>Computer simulation</subject><subject>Convergence</subject><subject>echo state network (ESN)</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>Garbage collection</subject><subject>hot data prediction</subject><subject>NAND flash memory</subject><subject>Neurons</subject><subject>Particle swarm optimization</subject><subject>Regularization</subject><subject>Reliability</subject><subject>Reservoirs</subject><subject>Scaling factors</subject><subject>solid state disk (SSD)</subject><subject>Sun</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx2428Vb6YQu1Cm3xGNLNrN3abmqSIv57d2nxNMPwvDPMg9A9JT1KiXpaDhbTHiNU9ZgShNDsAnVolsmESCIu2z5VieRMXqObELaEMEU47aDVAnZlMgPj66r-xBMX8dBEg9892KqIlauf8ccGPOBRsXF4EU0EPIf44_wXfgWIAc_78yEe70zYNIO98xWEW3RVml2Au3PtotV4tBxMktnby3TQnyUF5yImIk8VUWsLGSdrUFJmlOXWUmrSIuWlLQTNhRGlZQ3Oy7VUuciYJdYQxqSgvIseT3sP3n0fIUS9dUdfNyc140JS2fyYNRQ9UYV3IXgo9cFXe-N_NSW6tadbe7q1p8_2mszDKVMBwD8vVapSQfgfWT5oyQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Luo, Qiwu</creator><creator>Fang, Xiaoxin</creator><creator>Sun, Yichuang</creator><creator>Ai, Jiaqiu</creator><creator>Yang, Chunhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7923-0172</orcidid><orcidid>https://orcid.org/0000-0003-2822-5538</orcidid><orcidid>https://orcid.org/0000-0001-8352-2119</orcidid><orcidid>https://orcid.org/0000-0003-2550-1509</orcidid></search><sort><creationdate>20200301</creationdate><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><author>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Convergence</topic><topic>echo state network (ESN)</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>Garbage collection</topic><topic>hot data prediction</topic><topic>NAND flash memory</topic><topic>Neurons</topic><topic>Particle swarm optimization</topic><topic>Regularization</topic><topic>Reliability</topic><topic>Reservoirs</topic><topic>Scaling factors</topic><topic>solid state disk (SSD)</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiwu</creatorcontrib><creatorcontrib>Fang, Xiaoxin</creatorcontrib><creatorcontrib>Sun, Yichuang</creatorcontrib><creatorcontrib>Ai, Jiaqiu</creatorcontrib><creatorcontrib>Yang, Chunhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Qiwu</au><au>Fang, Xiaoxin</au><au>Sun, Yichuang</au><au>Ai, Jiaqiu</au><au>Yang, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>67</volume><issue>3</issue><spage>939</spage><epage>950</epage><pages>939-950</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2960015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7923-0172</orcidid><orcidid>https://orcid.org/0000-0003-2822-5538</orcidid><orcidid>https://orcid.org/0000-0001-8352-2119</orcidid><orcidid>https://orcid.org/0000-0003-2550-1509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2020-03, Vol.67 (3), p.939-950 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_2368180315 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Convergence echo state network (ESN) Flash memories Flash memory (computers) Garbage collection hot data prediction NAND flash memory Neurons Particle swarm optimization Regularization Reliability Reservoirs Scaling factors solid state disk (SSD) Sun |
title | Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Learning%20Hot%20Data%20Prediction:%20Where%20Echo%20State%20Network%20Meets%20NAND%20Flash%20Memories&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Luo,%20Qiwu&rft.date=2020-03-01&rft.volume=67&rft.issue=3&rft.spage=939&rft.epage=950&rft.pages=939-950&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2960015&rft_dat=%3Cproquest_RIE%3E2368180315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368180315&rft_id=info:pmid/&rft_ieee_id=8949460&rfr_iscdi=true |