Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories

Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-03, Vol.67 (3), p.939-950
Hauptverfasser: Luo, Qiwu, Fang, Xiaoxin, Sun, Yichuang, Ai, Jiaqiu, Yang, Chunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 950
container_issue 3
container_start_page 939
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 67
creator Luo, Qiwu
Fang, Xiaoxin
Sun, Yichuang
Ai, Jiaqiu
Yang, Chunhua
description Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.
doi_str_mv 10.1109/TCSI.2019.2960015
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2368180315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8949460</ieee_id><sourcerecordid>2368180315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx2428Vb6YQu1Cm3xGNLNrN3abmqSIv57d2nxNMPwvDPMg9A9JT1KiXpaDhbTHiNU9ZgShNDsAnVolsmESCIu2z5VieRMXqObELaEMEU47aDVAnZlMgPj66r-xBMX8dBEg9892KqIlauf8ccGPOBRsXF4EU0EPIf44_wXfgWIAc_78yEe70zYNIO98xWEW3RVml2Au3PtotV4tBxMktnby3TQnyUF5yImIk8VUWsLGSdrUFJmlOXWUmrSIuWlLQTNhRGlZQ3Oy7VUuciYJdYQxqSgvIseT3sP3n0fIUS9dUdfNyc140JS2fyYNRQ9UYV3IXgo9cFXe-N_NSW6tadbe7q1p8_2mszDKVMBwD8vVapSQfgfWT5oyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368180315</pqid></control><display><type>article</type><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</creator><creatorcontrib>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</creatorcontrib><description>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2960015</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Convergence ; echo state network (ESN) ; Flash memories ; Flash memory (computers) ; Garbage collection ; hot data prediction ; NAND flash memory ; Neurons ; Particle swarm optimization ; Regularization ; Reliability ; Reservoirs ; Scaling factors ; solid state disk (SSD) ; Sun</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2020-03, Vol.67 (3), p.939-950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</citedby><cites>FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</cites><orcidid>0000-0001-7923-0172 ; 0000-0003-2822-5538 ; 0000-0001-8352-2119 ; 0000-0003-2550-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8949460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8949460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Qiwu</creatorcontrib><creatorcontrib>Fang, Xiaoxin</creatorcontrib><creatorcontrib>Sun, Yichuang</creatorcontrib><creatorcontrib>Ai, Jiaqiu</creatorcontrib><creatorcontrib>Yang, Chunhua</creatorcontrib><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</description><subject>Computer simulation</subject><subject>Convergence</subject><subject>echo state network (ESN)</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>Garbage collection</subject><subject>hot data prediction</subject><subject>NAND flash memory</subject><subject>Neurons</subject><subject>Particle swarm optimization</subject><subject>Regularization</subject><subject>Reliability</subject><subject>Reservoirs</subject><subject>Scaling factors</subject><subject>solid state disk (SSD)</subject><subject>Sun</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx2428Vb6YQu1Cm3xGNLNrN3abmqSIv57d2nxNMPwvDPMg9A9JT1KiXpaDhbTHiNU9ZgShNDsAnVolsmESCIu2z5VieRMXqObELaEMEU47aDVAnZlMgPj66r-xBMX8dBEg9892KqIlauf8ccGPOBRsXF4EU0EPIf44_wXfgWIAc_78yEe70zYNIO98xWEW3RVml2Au3PtotV4tBxMktnby3TQnyUF5yImIk8VUWsLGSdrUFJmlOXWUmrSIuWlLQTNhRGlZQ3Oy7VUuciYJdYQxqSgvIseT3sP3n0fIUS9dUdfNyc140JS2fyYNRQ9UYV3IXgo9cFXe-N_NSW6tadbe7q1p8_2mszDKVMBwD8vVapSQfgfWT5oyQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Luo, Qiwu</creator><creator>Fang, Xiaoxin</creator><creator>Sun, Yichuang</creator><creator>Ai, Jiaqiu</creator><creator>Yang, Chunhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7923-0172</orcidid><orcidid>https://orcid.org/0000-0003-2822-5538</orcidid><orcidid>https://orcid.org/0000-0001-8352-2119</orcidid><orcidid>https://orcid.org/0000-0003-2550-1509</orcidid></search><sort><creationdate>20200301</creationdate><title>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</title><author>Luo, Qiwu ; Fang, Xiaoxin ; Sun, Yichuang ; Ai, Jiaqiu ; Yang, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-674909bde530be9885127dd11a4c43fdc6176a6fd23363fb897652d0da0228613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Convergence</topic><topic>echo state network (ESN)</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>Garbage collection</topic><topic>hot data prediction</topic><topic>NAND flash memory</topic><topic>Neurons</topic><topic>Particle swarm optimization</topic><topic>Regularization</topic><topic>Reliability</topic><topic>Reservoirs</topic><topic>Scaling factors</topic><topic>solid state disk (SSD)</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiwu</creatorcontrib><creatorcontrib>Fang, Xiaoxin</creatorcontrib><creatorcontrib>Sun, Yichuang</creatorcontrib><creatorcontrib>Ai, Jiaqiu</creatorcontrib><creatorcontrib>Yang, Chunhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Qiwu</au><au>Fang, Xiaoxin</au><au>Sun, Yichuang</au><au>Ai, Jiaqiu</au><au>Yang, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>67</volume><issue>3</issue><spage>939</spage><epage>950</epage><pages>939-950</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L 2 and L 1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2960015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7923-0172</orcidid><orcidid>https://orcid.org/0000-0003-2822-5538</orcidid><orcidid>https://orcid.org/0000-0001-8352-2119</orcidid><orcidid>https://orcid.org/0000-0003-2550-1509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2020-03, Vol.67 (3), p.939-950
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2368180315
source IEEE Electronic Library (IEL)
subjects Computer simulation
Convergence
echo state network (ESN)
Flash memories
Flash memory (computers)
Garbage collection
hot data prediction
NAND flash memory
Neurons
Particle swarm optimization
Regularization
Reliability
Reservoirs
Scaling factors
solid state disk (SSD)
Sun
title Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Learning%20Hot%20Data%20Prediction:%20Where%20Echo%20State%20Network%20Meets%20NAND%20Flash%20Memories&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Luo,%20Qiwu&rft.date=2020-03-01&rft.volume=67&rft.issue=3&rft.spage=939&rft.epage=950&rft.pages=939-950&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2960015&rft_dat=%3Cproquest_RIE%3E2368180315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368180315&rft_id=info:pmid/&rft_ieee_id=8949460&rfr_iscdi=true