An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO
In this article, a two-stage millimeter (mm)-wave frequency synthesizer with low in-band noise and robust locking reference-sampling techniques is presented. Using a two-stage scheme allows separately dealing with the low phase noise (PN) frequency synthesis in the first stage and the mm-wave freque...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2020-03, Vol.55 (3), p.536-546 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 3 |
container_start_page | 536 |
container_title | IEEE journal of solid-state circuits |
container_volume | 55 |
creator | Liao, Dongyi Zhang, Yucai Dai, Fa Foster Chen, Zhenqi Wang, Yanjie |
description | In this article, a two-stage millimeter (mm)-wave frequency synthesizer with low in-band noise and robust locking reference-sampling techniques is presented. Using a two-stage scheme allows separately dealing with the low phase noise (PN) frequency synthesis in the first stage and the mm-wave frequency multiplication in the second stage, achieving the best overall power efficiency. In the first stage, a voltage domain reference-sampling phase detector (RSPD)-locked loop (RSPLL) is adopted to achieve both low PN and robust locking without additional frequency locking loop. A reference reshaping buffer is implemented to improve the phase detector gain and in-band PN. The reference rising/falling time is programmable to achieve optimal RSPLL performance even under external disturbances. The second stage employs an injection-locked voltage-controlled oscillator (ILVCO) for 4× frequency multiplication. A low-power digital frequency tracking loop (FTL) detecting actual frequency errors is implemented in order to achieve wide operation range for the ILVCO while using a high Q tank with low power. The prototype synthesizer was fabricated in a 45-nm partially depleted silicon on insulator (PDSOI) CMOS technology. The first stage 9-GHz RSPLL achieves 144-fs integrated jitter with 7.2-mW power consumption, achieving a figure of merit (FoM) of -248 dB and the overall mm-wave synthesizer achieves 251-fs integrated jitter with 20.6-mW power consumption at 35.84 GHz, achieving an FoM of -238.9 dB. |
doi_str_mv | 10.1109/JSSC.2019.2959513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2368141283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8955789</ieee_id><sourcerecordid>2368141283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a8730d52359cb35a87078b9eaed79fcbdacae6f52acc6fbf4957987cf8a4d96d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zj6ZNLkfxY1KYrOq8C2l6unXadLadMH-9LRteHd7D854DD0LXjE4Yo_ruOU3jCadMT7iWWjJxgkZMSkVYJD5O0YhSpojmlJ6ji7bd9DEIFBshmHpcVWRpfwCne9-toS1_ocHLslvjRZ3t2g4ntfss_QovoIAGvAOS2mr7NaxekgRbn_d4DmRh_QrwzG_AdWXtydCDHL_H80t0VtivFq6Oc4zeHu5f4yeSzB9n8TQhjmvREasiQXPJhdQuE7KPNFKZBgt5pAuX5dZZCAvJrXNhkRWBlpFWkSuUDXId5mKMbg93t039vYO2M5t61_j-peEiVCxgXImeYgfKNXXbNlCYbVNWttkbRs1g0ww2zWDTHG32nZtDpwSAf15pKSOlxR_9r3EZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368141283</pqid></control><display><type>article</type><title>An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Dongyi ; Zhang, Yucai ; Dai, Fa Foster ; Chen, Zhenqi ; Wang, Yanjie</creator><creatorcontrib>Liao, Dongyi ; Zhang, Yucai ; Dai, Fa Foster ; Chen, Zhenqi ; Wang, Yanjie</creatorcontrib><description>In this article, a two-stage millimeter (mm)-wave frequency synthesizer with low in-band noise and robust locking reference-sampling techniques is presented. Using a two-stage scheme allows separately dealing with the low phase noise (PN) frequency synthesis in the first stage and the mm-wave frequency multiplication in the second stage, achieving the best overall power efficiency. In the first stage, a voltage domain reference-sampling phase detector (RSPD)-locked loop (RSPLL) is adopted to achieve both low PN and robust locking without additional frequency locking loop. A reference reshaping buffer is implemented to improve the phase detector gain and in-band PN. The reference rising/falling time is programmable to achieve optimal RSPLL performance even under external disturbances. The second stage employs an injection-locked voltage-controlled oscillator (ILVCO) for 4× frequency multiplication. A low-power digital frequency tracking loop (FTL) detecting actual frequency errors is implemented in order to achieve wide operation range for the ILVCO while using a high Q tank with low power. The prototype synthesizer was fabricated in a 45-nm partially depleted silicon on insulator (PDSOI) CMOS technology. The first stage 9-GHz RSPLL achieves 144-fs integrated jitter with 7.2-mW power consumption, achieving a figure of merit (FoM) of -248 dB and the overall mm-wave synthesizer achieves 251-fs integrated jitter with 20.6-mW power consumption at 35.84 GHz, achieving an FoM of -238.9 dB.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2959513</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; CMOS ; Figure of merit ; Frequency conversion ; Frequency locked loops ; Frequency locking ; Frequency synthesizers ; Frequency tracking loop (FTL) ; injection-locked frequency divider (ILFD) ; injection-locked oscillator ; millimeter (mm)-wave frequency generation ; Millimeter waves ; Multiplication ; Phase detectors ; Phase locked loops ; Power consumption ; Power efficiency ; reference-sampling phase detector (RSPD)-locked loop (RSPLL) ; Robustness ; Sampling methods ; sub-sampling PLL (SSPLL) ; Synthesis ; Synthesizers ; Vibration ; Voltage controlled oscillators</subject><ispartof>IEEE journal of solid-state circuits, 2020-03, Vol.55 (3), p.536-546</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a8730d52359cb35a87078b9eaed79fcbdacae6f52acc6fbf4957987cf8a4d96d3</citedby><cites>FETCH-LOGICAL-c293t-a8730d52359cb35a87078b9eaed79fcbdacae6f52acc6fbf4957987cf8a4d96d3</cites><orcidid>0000-0003-1691-6649 ; 0000-0002-4418-5612 ; 0000-0002-2712-7998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8955789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8955789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Dongyi</creatorcontrib><creatorcontrib>Zhang, Yucai</creatorcontrib><creatorcontrib>Dai, Fa Foster</creatorcontrib><creatorcontrib>Chen, Zhenqi</creatorcontrib><creatorcontrib>Wang, Yanjie</creatorcontrib><title>An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>In this article, a two-stage millimeter (mm)-wave frequency synthesizer with low in-band noise and robust locking reference-sampling techniques is presented. Using a two-stage scheme allows separately dealing with the low phase noise (PN) frequency synthesis in the first stage and the mm-wave frequency multiplication in the second stage, achieving the best overall power efficiency. In the first stage, a voltage domain reference-sampling phase detector (RSPD)-locked loop (RSPLL) is adopted to achieve both low PN and robust locking without additional frequency locking loop. A reference reshaping buffer is implemented to improve the phase detector gain and in-band PN. The reference rising/falling time is programmable to achieve optimal RSPLL performance even under external disturbances. The second stage employs an injection-locked voltage-controlled oscillator (ILVCO) for 4× frequency multiplication. A low-power digital frequency tracking loop (FTL) detecting actual frequency errors is implemented in order to achieve wide operation range for the ILVCO while using a high Q tank with low power. The prototype synthesizer was fabricated in a 45-nm partially depleted silicon on insulator (PDSOI) CMOS technology. The first stage 9-GHz RSPLL achieves 144-fs integrated jitter with 7.2-mW power consumption, achieving a figure of merit (FoM) of -248 dB and the overall mm-wave synthesizer achieves 251-fs integrated jitter with 20.6-mW power consumption at 35.84 GHz, achieving an FoM of -238.9 dB.</description><subject>Bandwidth</subject><subject>CMOS</subject><subject>Figure of merit</subject><subject>Frequency conversion</subject><subject>Frequency locked loops</subject><subject>Frequency locking</subject><subject>Frequency synthesizers</subject><subject>Frequency tracking loop (FTL)</subject><subject>injection-locked frequency divider (ILFD)</subject><subject>injection-locked oscillator</subject><subject>millimeter (mm)-wave frequency generation</subject><subject>Millimeter waves</subject><subject>Multiplication</subject><subject>Phase detectors</subject><subject>Phase locked loops</subject><subject>Power consumption</subject><subject>Power efficiency</subject><subject>reference-sampling phase detector (RSPD)-locked loop (RSPLL)</subject><subject>Robustness</subject><subject>Sampling methods</subject><subject>sub-sampling PLL (SSPLL)</subject><subject>Synthesis</subject><subject>Synthesizers</subject><subject>Vibration</subject><subject>Voltage controlled oscillators</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zj6ZNLkfxY1KYrOq8C2l6unXadLadMH-9LRteHd7D854DD0LXjE4Yo_ruOU3jCadMT7iWWjJxgkZMSkVYJD5O0YhSpojmlJ6ji7bd9DEIFBshmHpcVWRpfwCne9-toS1_ocHLslvjRZ3t2g4ntfss_QovoIAGvAOS2mr7NaxekgRbn_d4DmRh_QrwzG_AdWXtydCDHL_H80t0VtivFq6Oc4zeHu5f4yeSzB9n8TQhjmvREasiQXPJhdQuE7KPNFKZBgt5pAuX5dZZCAvJrXNhkRWBlpFWkSuUDXId5mKMbg93t039vYO2M5t61_j-peEiVCxgXImeYgfKNXXbNlCYbVNWttkbRs1g0ww2zWDTHG32nZtDpwSAf15pKSOlxR_9r3EZ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liao, Dongyi</creator><creator>Zhang, Yucai</creator><creator>Dai, Fa Foster</creator><creator>Chen, Zhenqi</creator><creator>Wang, Yanjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1691-6649</orcidid><orcidid>https://orcid.org/0000-0002-4418-5612</orcidid><orcidid>https://orcid.org/0000-0002-2712-7998</orcidid></search><sort><creationdate>20200301</creationdate><title>An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO</title><author>Liao, Dongyi ; Zhang, Yucai ; Dai, Fa Foster ; Chen, Zhenqi ; Wang, Yanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a8730d52359cb35a87078b9eaed79fcbdacae6f52acc6fbf4957987cf8a4d96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidth</topic><topic>CMOS</topic><topic>Figure of merit</topic><topic>Frequency conversion</topic><topic>Frequency locked loops</topic><topic>Frequency locking</topic><topic>Frequency synthesizers</topic><topic>Frequency tracking loop (FTL)</topic><topic>injection-locked frequency divider (ILFD)</topic><topic>injection-locked oscillator</topic><topic>millimeter (mm)-wave frequency generation</topic><topic>Millimeter waves</topic><topic>Multiplication</topic><topic>Phase detectors</topic><topic>Phase locked loops</topic><topic>Power consumption</topic><topic>Power efficiency</topic><topic>reference-sampling phase detector (RSPD)-locked loop (RSPLL)</topic><topic>Robustness</topic><topic>Sampling methods</topic><topic>sub-sampling PLL (SSPLL)</topic><topic>Synthesis</topic><topic>Synthesizers</topic><topic>Vibration</topic><topic>Voltage controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Dongyi</creatorcontrib><creatorcontrib>Zhang, Yucai</creatorcontrib><creatorcontrib>Dai, Fa Foster</creatorcontrib><creatorcontrib>Chen, Zhenqi</creatorcontrib><creatorcontrib>Wang, Yanjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Dongyi</au><au>Zhang, Yucai</au><au>Dai, Fa Foster</au><au>Chen, Zhenqi</au><au>Wang, Yanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>3</issue><spage>536</spage><epage>546</epage><pages>536-546</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>In this article, a two-stage millimeter (mm)-wave frequency synthesizer with low in-band noise and robust locking reference-sampling techniques is presented. Using a two-stage scheme allows separately dealing with the low phase noise (PN) frequency synthesis in the first stage and the mm-wave frequency multiplication in the second stage, achieving the best overall power efficiency. In the first stage, a voltage domain reference-sampling phase detector (RSPD)-locked loop (RSPLL) is adopted to achieve both low PN and robust locking without additional frequency locking loop. A reference reshaping buffer is implemented to improve the phase detector gain and in-band PN. The reference rising/falling time is programmable to achieve optimal RSPLL performance even under external disturbances. The second stage employs an injection-locked voltage-controlled oscillator (ILVCO) for 4× frequency multiplication. A low-power digital frequency tracking loop (FTL) detecting actual frequency errors is implemented in order to achieve wide operation range for the ILVCO while using a high Q tank with low power. The prototype synthesizer was fabricated in a 45-nm partially depleted silicon on insulator (PDSOI) CMOS technology. The first stage 9-GHz RSPLL achieves 144-fs integrated jitter with 7.2-mW power consumption, achieving a figure of merit (FoM) of -248 dB and the overall mm-wave synthesizer achieves 251-fs integrated jitter with 20.6-mW power consumption at 35.84 GHz, achieving an FoM of -238.9 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2959513</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1691-6649</orcidid><orcidid>https://orcid.org/0000-0002-4418-5612</orcidid><orcidid>https://orcid.org/0000-0002-2712-7998</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2020-03, Vol.55 (3), p.536-546 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2368141283 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth CMOS Figure of merit Frequency conversion Frequency locked loops Frequency locking Frequency synthesizers Frequency tracking loop (FTL) injection-locked frequency divider (ILFD) injection-locked oscillator millimeter (mm)-wave frequency generation Millimeter waves Multiplication Phase detectors Phase locked loops Power consumption Power efficiency reference-sampling phase detector (RSPD)-locked loop (RSPLL) Robustness Sampling methods sub-sampling PLL (SSPLL) Synthesis Synthesizers Vibration Voltage controlled oscillators |
title | An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20mm-Wave%20Synthesizer%20With%20Robust%20Locking%20Reference-Sampling%20PLL%20and%20Wide-Range%20Injection-Locked%20VCO&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Liao,%20Dongyi&rft.date=2020-03-01&rft.volume=55&rft.issue=3&rft.spage=536&rft.epage=546&rft.pages=536-546&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2959513&rft_dat=%3Cproquest_RIE%3E2368141283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368141283&rft_id=info:pmid/&rft_ieee_id=8955789&rfr_iscdi=true |