Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type

We consider the decay rate of solutions to nonlinear Klein-Gordon systems with a critical type nonlinearity. We will specify the optimal decay rate for a specific class of Klein-Gordon systems containing the dissipative nonlinearites. It will turn out that the decay rate which is previously found in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Masaki, Satoshi, Sugiyama, Koki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Masaki, Satoshi
Sugiyama, Koki
description We consider the decay rate of solutions to nonlinear Klein-Gordon systems with a critical type nonlinearity. We will specify the optimal decay rate for a specific class of Klein-Gordon systems containing the dissipative nonlinearites. It will turn out that the decay rate which is previously found in some models is optimal.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2367461640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2367461640</sourcerecordid><originalsourceid>FETCH-proquest_journals_23674616403</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMgWLT_sOC50CZt6l18gAcPepfQbiElzdZseujfW8EP8DSHGWYlEqlUkR1KKTciZe7zPJe6llWlEvG4j9EOxkGLjZkhmIhAHTC5KVryDB0F8OSd9WgC3Bxan10otOSBZ4448Ldvgo22WTZxHnEn1p1xjOmPW7E_n57HazYGek_I8dXTFPyiXlLputSFLnP1X_UBXL5AYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367461640</pqid></control><display><type>article</type><title>Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type</title><source>Free E- Journals</source><creator>Masaki, Satoshi ; Sugiyama, Koki</creator><creatorcontrib>Masaki, Satoshi ; Sugiyama, Koki</creatorcontrib><description>We consider the decay rate of solutions to nonlinear Klein-Gordon systems with a critical type nonlinearity. We will specify the optimal decay rate for a specific class of Klein-Gordon systems containing the dissipative nonlinearites. It will turn out that the decay rate which is previously found in some models is optimal.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decay rate ; Matter &amp; antimatter ; Nonlinear systems ; Nonlinearity</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Masaki, Satoshi</creatorcontrib><creatorcontrib>Sugiyama, Koki</creatorcontrib><title>Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type</title><title>arXiv.org</title><description>We consider the decay rate of solutions to nonlinear Klein-Gordon systems with a critical type nonlinearity. We will specify the optimal decay rate for a specific class of Klein-Gordon systems containing the dissipative nonlinearites. It will turn out that the decay rate which is previously found in some models is optimal.</description><subject>Decay rate</subject><subject>Matter &amp; antimatter</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQAIMgWLT_sOC50CZt6l18gAcPepfQbiElzdZseujfW8EP8DSHGWYlEqlUkR1KKTciZe7zPJe6llWlEvG4j9EOxkGLjZkhmIhAHTC5KVryDB0F8OSd9WgC3Bxan10otOSBZ4448Ldvgo22WTZxHnEn1p1xjOmPW7E_n57HazYGek_I8dXTFPyiXlLputSFLnP1X_UBXL5AYw</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Masaki, Satoshi</creator><creator>Sugiyama, Koki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200227</creationdate><title>Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type</title><author>Masaki, Satoshi ; Sugiyama, Koki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23674616403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decay rate</topic><topic>Matter &amp; antimatter</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Masaki, Satoshi</creatorcontrib><creatorcontrib>Sugiyama, Koki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masaki, Satoshi</au><au>Sugiyama, Koki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type</atitle><jtitle>arXiv.org</jtitle><date>2020-02-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We consider the decay rate of solutions to nonlinear Klein-Gordon systems with a critical type nonlinearity. We will specify the optimal decay rate for a specific class of Klein-Gordon systems containing the dissipative nonlinearites. It will turn out that the decay rate which is previously found in some models is optimal.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2367461640
source Free E- Journals
subjects Decay rate
Matter & antimatter
Nonlinear systems
Nonlinearity
title Optimal decay rate of solutions for nonlinear Klein-Gordon systems of critical type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20decay%20rate%20of%20solutions%20for%20nonlinear%20Klein-Gordon%20systems%20of%20critical%20type&rft.jtitle=arXiv.org&rft.au=Masaki,%20Satoshi&rft.date=2020-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2367461640%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2367461640&rft_id=info:pmid/&rfr_iscdi=true