Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion

Using gas flow to reduce laser plume attenuation is critical in the process control of laser powder bed fusion (LPBF) of metal powders. First, this work investigated Hastelloy X (HX) samples built at different gas flow speeds. Higher porosity with lack of fusion defects was found in the samples buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-03, Vol.72 (3), p.1039-1051
Hauptverfasser: Shen, Haopeng, Rometsch, Paul, Wu, Xinhua, Huang, Aijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 3
container_start_page 1039
container_title JOM (1989)
container_volume 72
creator Shen, Haopeng
Rometsch, Paul
Wu, Xinhua
Huang, Aijun
description Using gas flow to reduce laser plume attenuation is critical in the process control of laser powder bed fusion (LPBF) of metal powders. First, this work investigated Hastelloy X (HX) samples built at different gas flow speeds. Higher porosity with lack of fusion defects was found in the samples built at lower gas flow speeds, which indicates a significant influence of laser plume attenuation. Then, particle pickup experiments were conducted to investigate the limit of further increasing the gas flow speed without disturbing the powder bed. Eight different powders of four alloys (Al, Ti, steel, and Ni) with mean sizes ranging from 25 µm to 118 µm were studied. A model was introduced to predict the pickup speeds of different powders. Lastly, a method based on porosity and particle pickup speed was proposed for the reference of setting the lower and upper limits of gas flow speed in LPBF.
doi_str_mv 10.1007/s11837-020-04020-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366669566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366669566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7330a56298b3e87a8cb0e93059d4a7adaf0df288f1ade027f6da413174de1e753</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAczRp0iY9zuHmYGBBPYeseZHOrq1Jy9i3N7Pibubw8nj5_V7gj9Ato_eMUvkQGFNcEppQQsWxHs7QhKWCE6ZSdh57KiQRiqtLdBXClkZJ5GyCulXj6gGaEnDr8NIEvKjbPX7tACxuG7w2ATwu6mEHeNb30Aymr-LcNBYX7d7Gx8dIFsb3VVkDLqryc-hw9WeemMUQonmNLpypA9z83lP0vnh6mz-T9ctyNZ-tSSmSvCeSc2rSLMnVhoOSRpUbCjmnaW6FkcYaR61LlHLMWKCJdJk1gnEmhQUGMuVTdDfu7Xz7NUDo9bYdfBO_1AnP4snTLItUMlKlb0Pw4HTnq53xB82oPiarx2R1zFT_JKsPUeKjFCLcfIA_rf7H-gbPLnu5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366669566</pqid></control><display><type>article</type><title>Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Haopeng ; Rometsch, Paul ; Wu, Xinhua ; Huang, Aijun</creator><creatorcontrib>Shen, Haopeng ; Rometsch, Paul ; Wu, Xinhua ; Huang, Aijun</creatorcontrib><description>Using gas flow to reduce laser plume attenuation is critical in the process control of laser powder bed fusion (LPBF) of metal powders. First, this work investigated Hastelloy X (HX) samples built at different gas flow speeds. Higher porosity with lack of fusion defects was found in the samples built at lower gas flow speeds, which indicates a significant influence of laser plume attenuation. Then, particle pickup experiments were conducted to investigate the limit of further increasing the gas flow speed without disturbing the powder bed. Eight different powders of four alloys (Al, Ti, steel, and Ni) with mean sizes ranging from 25 µm to 118 µm were studied. A model was introduced to predict the pickup speeds of different powders. Lastly, a method based on porosity and particle pickup speed was proposed for the reference of setting the lower and upper limits of gas flow speed in LPBF.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04020-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy powders ; Alloy steels ; Attenuation ; Chemistry/Food Science ; Earth Sciences ; Engineering ; Environment ; Gas flow ; Hastelloy (trademark) ; Lasers ; Metal powders ; Nickel ; Physics ; Porosity ; Powder beds ; Process controls ; Rapid prototyping ; Researchers ; Reynolds number ; The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019) ; Titanium</subject><ispartof>JOM (1989), 2020-03, Vol.72 (3), p.1039-1051</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7330a56298b3e87a8cb0e93059d4a7adaf0df288f1ade027f6da413174de1e753</citedby><cites>FETCH-LOGICAL-c429t-7330a56298b3e87a8cb0e93059d4a7adaf0df288f1ade027f6da413174de1e753</cites><orcidid>0000-0002-3823-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04020-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04020-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shen, Haopeng</creatorcontrib><creatorcontrib>Rometsch, Paul</creatorcontrib><creatorcontrib>Wu, Xinhua</creatorcontrib><creatorcontrib>Huang, Aijun</creatorcontrib><title>Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Using gas flow to reduce laser plume attenuation is critical in the process control of laser powder bed fusion (LPBF) of metal powders. First, this work investigated Hastelloy X (HX) samples built at different gas flow speeds. Higher porosity with lack of fusion defects was found in the samples built at lower gas flow speeds, which indicates a significant influence of laser plume attenuation. Then, particle pickup experiments were conducted to investigate the limit of further increasing the gas flow speed without disturbing the powder bed. Eight different powders of four alloys (Al, Ti, steel, and Ni) with mean sizes ranging from 25 µm to 118 µm were studied. A model was introduced to predict the pickup speeds of different powders. Lastly, a method based on porosity and particle pickup speed was proposed for the reference of setting the lower and upper limits of gas flow speed in LPBF.</description><subject>Alloy powders</subject><subject>Alloy steels</subject><subject>Attenuation</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Gas flow</subject><subject>Hastelloy (trademark)</subject><subject>Lasers</subject><subject>Metal powders</subject><subject>Nickel</subject><subject>Physics</subject><subject>Porosity</subject><subject>Powder beds</subject><subject>Process controls</subject><subject>Rapid prototyping</subject><subject>Researchers</subject><subject>Reynolds number</subject><subject>The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)</subject><subject>Titanium</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAUx4MoOKdfwFPAczRp0iY9zuHmYGBBPYeseZHOrq1Jy9i3N7Pibubw8nj5_V7gj9Ato_eMUvkQGFNcEppQQsWxHs7QhKWCE6ZSdh57KiQRiqtLdBXClkZJ5GyCulXj6gGaEnDr8NIEvKjbPX7tACxuG7w2ATwu6mEHeNb30Aymr-LcNBYX7d7Gx8dIFsb3VVkDLqryc-hw9WeemMUQonmNLpypA9z83lP0vnh6mz-T9ctyNZ-tSSmSvCeSc2rSLMnVhoOSRpUbCjmnaW6FkcYaR61LlHLMWKCJdJk1gnEmhQUGMuVTdDfu7Xz7NUDo9bYdfBO_1AnP4snTLItUMlKlb0Pw4HTnq53xB82oPiarx2R1zFT_JKsPUeKjFCLcfIA_rf7H-gbPLnu5</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shen, Haopeng</creator><creator>Rometsch, Paul</creator><creator>Wu, Xinhua</creator><creator>Huang, Aijun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3823-9442</orcidid></search><sort><creationdate>20200301</creationdate><title>Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion</title><author>Shen, Haopeng ; Rometsch, Paul ; Wu, Xinhua ; Huang, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7330a56298b3e87a8cb0e93059d4a7adaf0df288f1ade027f6da413174de1e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy powders</topic><topic>Alloy steels</topic><topic>Attenuation</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Gas flow</topic><topic>Hastelloy (trademark)</topic><topic>Lasers</topic><topic>Metal powders</topic><topic>Nickel</topic><topic>Physics</topic><topic>Porosity</topic><topic>Powder beds</topic><topic>Process controls</topic><topic>Rapid prototyping</topic><topic>Researchers</topic><topic>Reynolds number</topic><topic>The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Haopeng</creatorcontrib><creatorcontrib>Rometsch, Paul</creatorcontrib><creatorcontrib>Wu, Xinhua</creatorcontrib><creatorcontrib>Huang, Aijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Haopeng</au><au>Rometsch, Paul</au><au>Wu, Xinhua</au><au>Huang, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>72</volume><issue>3</issue><spage>1039</spage><epage>1051</epage><pages>1039-1051</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Using gas flow to reduce laser plume attenuation is critical in the process control of laser powder bed fusion (LPBF) of metal powders. First, this work investigated Hastelloy X (HX) samples built at different gas flow speeds. Higher porosity with lack of fusion defects was found in the samples built at lower gas flow speeds, which indicates a significant influence of laser plume attenuation. Then, particle pickup experiments were conducted to investigate the limit of further increasing the gas flow speed without disturbing the powder bed. Eight different powders of four alloys (Al, Ti, steel, and Ni) with mean sizes ranging from 25 µm to 118 µm were studied. A model was introduced to predict the pickup speeds of different powders. Lastly, a method based on porosity and particle pickup speed was proposed for the reference of setting the lower and upper limits of gas flow speed in LPBF.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04020-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3823-9442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-03, Vol.72 (3), p.1039-1051
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2366669566
source SpringerLink Journals - AutoHoldings
subjects Alloy powders
Alloy steels
Attenuation
Chemistry/Food Science
Earth Sciences
Engineering
Environment
Gas flow
Hastelloy (trademark)
Lasers
Metal powders
Nickel
Physics
Porosity
Powder beds
Process controls
Rapid prototyping
Researchers
Reynolds number
The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
Titanium
title Influence of Gas Flow Speed on Laser Plume Attenuation and Powder Bed Particle Pickup in Laser Powder Bed Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Gas%20Flow%20Speed%20on%20Laser%20Plume%20Attenuation%20and%20Powder%20Bed%20Particle%20Pickup%20in%20Laser%20Powder%20Bed%20Fusion&rft.jtitle=JOM%20(1989)&rft.au=Shen,%20Haopeng&rft.date=2020-03-01&rft.volume=72&rft.issue=3&rft.spage=1039&rft.epage=1051&rft.pages=1039-1051&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04020-y&rft_dat=%3Cproquest_cross%3E2366669566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366669566&rft_id=info:pmid/&rfr_iscdi=true