Ensemble-model-based link prediction of complex networks

The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978
Hauptverfasser: Li, Kuanyang, Tu, Lilan, Chai, Lang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106978
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 166
creator Li, Kuanyang
Tu, Lilan
Chai, Lang
description The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.
doi_str_mv 10.1016/j.comnet.2019.106978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366556892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128619308710</els_id><sourcerecordid>2366556892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</originalsourceid><addsrcrecordid>eNp9UElLxDAYDaLgOPoPPBQ8Z8zSpslFkMENBrzoOWT5Cu20TU06Lv_eDPXs6Vt4C-8hdE3JhhIqbruNC8MI84YRqvJLqFqeoBWVNcN1vk7zzqXClElxji5S6gghZcnkCsmHMcFge8BD8NBjaxL4om_HfTFF8K2b2zAWoSmyw9TDd5FtvkLcp0t01pg-wdXfXKP3x4e37TPevT69bO932HFezlhWJTNUNU4R4b0htGkIZ0AUlF4xW1MrLRXEcKiUt7LkHphtCJOWSSOk5Wt0s-hOMXwcIM26C4c4ZkvNuBBVJaRiGVUuKBdDShEaPcV2MPFHU6KPHelOLx3pY0d66SjT7hYa5ASfLUSdXAujy8EjuFn70P4v8AvKOnEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366556892</pqid></control><display><type>article</type><title>Ensemble-model-based link prediction of complex networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</creator><creatorcontrib>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</creatorcontrib><description>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2019.106978</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Computer simulation ; Ensemble-model ; Link prediction of complex networks ; Logistic regression ; Mathematical models ; Nematodes ; Neural networks ; Regression analysis ; Similarity ; Similarity index ; Stability ; Stacking ; Stacking technology</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978</ispartof><rights>2019</rights><rights>Copyright Elsevier Sequoia S.A. Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</citedby><cites>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2019.106978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Kuanyang</creatorcontrib><creatorcontrib>Tu, Lilan</creatorcontrib><creatorcontrib>Chai, Lang</creatorcontrib><title>Ensemble-model-based link prediction of complex networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Ensemble-model</subject><subject>Link prediction of complex networks</subject><subject>Logistic regression</subject><subject>Mathematical models</subject><subject>Nematodes</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Similarity</subject><subject>Similarity index</subject><subject>Stability</subject><subject>Stacking</subject><subject>Stacking technology</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UElLxDAYDaLgOPoPPBQ8Z8zSpslFkMENBrzoOWT5Cu20TU06Lv_eDPXs6Vt4C-8hdE3JhhIqbruNC8MI84YRqvJLqFqeoBWVNcN1vk7zzqXClElxji5S6gghZcnkCsmHMcFge8BD8NBjaxL4om_HfTFF8K2b2zAWoSmyw9TDd5FtvkLcp0t01pg-wdXfXKP3x4e37TPevT69bO932HFezlhWJTNUNU4R4b0htGkIZ0AUlF4xW1MrLRXEcKiUt7LkHphtCJOWSSOk5Wt0s-hOMXwcIM26C4c4ZkvNuBBVJaRiGVUuKBdDShEaPcV2MPFHU6KPHelOLx3pY0d66SjT7hYa5ASfLUSdXAujy8EjuFn70P4v8AvKOnEp</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Li, Kuanyang</creator><creator>Tu, Lilan</creator><creator>Chai, Lang</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200115</creationdate><title>Ensemble-model-based link prediction of complex networks</title><author>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Ensemble-model</topic><topic>Link prediction of complex networks</topic><topic>Logistic regression</topic><topic>Mathematical models</topic><topic>Nematodes</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Similarity</topic><topic>Similarity index</topic><topic>Stability</topic><topic>Stacking</topic><topic>Stacking technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kuanyang</creatorcontrib><creatorcontrib>Tu, Lilan</creatorcontrib><creatorcontrib>Chai, Lang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kuanyang</au><au>Tu, Lilan</au><au>Chai, Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble-model-based link prediction of complex networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>166</volume><spage>106978</spage><pages>106978-</pages><artnum>106978</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2019.106978</doi></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2366556892
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Computer simulation
Ensemble-model
Link prediction of complex networks
Logistic regression
Mathematical models
Nematodes
Neural networks
Regression analysis
Similarity
Similarity index
Stability
Stacking
Stacking technology
title Ensemble-model-based link prediction of complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble-model-based%20link%20prediction%20of%20complex%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Li,%20Kuanyang&rft.date=2020-01-15&rft.volume=166&rft.spage=106978&rft.pages=106978-&rft.artnum=106978&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2019.106978&rft_dat=%3Cproquest_cross%3E2366556892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366556892&rft_id=info:pmid/&rft_els_id=S1389128619308710&rfr_iscdi=true