Ensemble-model-based link prediction of complex networks
The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of s...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106978 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 166 |
creator | Li, Kuanyang Tu, Lilan Chai, Lang |
description | The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy. |
doi_str_mv | 10.1016/j.comnet.2019.106978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366556892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128619308710</els_id><sourcerecordid>2366556892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</originalsourceid><addsrcrecordid>eNp9UElLxDAYDaLgOPoPPBQ8Z8zSpslFkMENBrzoOWT5Cu20TU06Lv_eDPXs6Vt4C-8hdE3JhhIqbruNC8MI84YRqvJLqFqeoBWVNcN1vk7zzqXClElxji5S6gghZcnkCsmHMcFge8BD8NBjaxL4om_HfTFF8K2b2zAWoSmyw9TDd5FtvkLcp0t01pg-wdXfXKP3x4e37TPevT69bO932HFezlhWJTNUNU4R4b0htGkIZ0AUlF4xW1MrLRXEcKiUt7LkHphtCJOWSSOk5Wt0s-hOMXwcIM26C4c4ZkvNuBBVJaRiGVUuKBdDShEaPcV2MPFHU6KPHelOLx3pY0d66SjT7hYa5ASfLUSdXAujy8EjuFn70P4v8AvKOnEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366556892</pqid></control><display><type>article</type><title>Ensemble-model-based link prediction of complex networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</creator><creatorcontrib>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</creatorcontrib><description>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2019.106978</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Computer simulation ; Ensemble-model ; Link prediction of complex networks ; Logistic regression ; Mathematical models ; Nematodes ; Neural networks ; Regression analysis ; Similarity ; Similarity index ; Stability ; Stacking ; Stacking technology</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978</ispartof><rights>2019</rights><rights>Copyright Elsevier Sequoia S.A. Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</citedby><cites>FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2019.106978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Kuanyang</creatorcontrib><creatorcontrib>Tu, Lilan</creatorcontrib><creatorcontrib>Chai, Lang</creatorcontrib><title>Ensemble-model-based link prediction of complex networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Ensemble-model</subject><subject>Link prediction of complex networks</subject><subject>Logistic regression</subject><subject>Mathematical models</subject><subject>Nematodes</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Similarity</subject><subject>Similarity index</subject><subject>Stability</subject><subject>Stacking</subject><subject>Stacking technology</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UElLxDAYDaLgOPoPPBQ8Z8zSpslFkMENBrzoOWT5Cu20TU06Lv_eDPXs6Vt4C-8hdE3JhhIqbruNC8MI84YRqvJLqFqeoBWVNcN1vk7zzqXClElxji5S6gghZcnkCsmHMcFge8BD8NBjaxL4om_HfTFF8K2b2zAWoSmyw9TDd5FtvkLcp0t01pg-wdXfXKP3x4e37TPevT69bO932HFezlhWJTNUNU4R4b0htGkIZ0AUlF4xW1MrLRXEcKiUt7LkHphtCJOWSSOk5Wt0s-hOMXwcIM26C4c4ZkvNuBBVJaRiGVUuKBdDShEaPcV2MPFHU6KPHelOLx3pY0d66SjT7hYa5ASfLUSdXAujy8EjuFn70P4v8AvKOnEp</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Li, Kuanyang</creator><creator>Tu, Lilan</creator><creator>Chai, Lang</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200115</creationdate><title>Ensemble-model-based link prediction of complex networks</title><author>Li, Kuanyang ; Tu, Lilan ; Chai, Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8542a19fc906dda01ff032e09e4d92b71b8b160a3e59db843de2bf028b28a68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Ensemble-model</topic><topic>Link prediction of complex networks</topic><topic>Logistic regression</topic><topic>Mathematical models</topic><topic>Nematodes</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Similarity</topic><topic>Similarity index</topic><topic>Stability</topic><topic>Stacking</topic><topic>Stacking technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kuanyang</creatorcontrib><creatorcontrib>Tu, Lilan</creatorcontrib><creatorcontrib>Chai, Lang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kuanyang</au><au>Tu, Lilan</au><au>Chai, Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble-model-based link prediction of complex networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>166</volume><spage>106978</spage><pages>106978-</pages><artnum>106978</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>The traditional similarity-based link prediction of complex networks mainly considers a certain similarity index of each node. To improve the stability and accuracy of link prediction, in this paper, we assemble the four similarity indexes (i.e. CN, LHN-II, COS+, and MFI) and introduce the idea of stacking into the link prediction of complex networks. First, based on Logistic regression algorithm and an Xgboost algorithm, we take four similarity indexes as the four characteristics to be learned by the models. Next, we use cross-validation, grid searching and early-stopping methods to determine the hyperparameters of these models. Then, according to the idea of the ensemble-model, and combined with logistic regression and stacking technology, we propose a new link prediction algorithm of complex networks, called the ensemble-model-based link prediction algorithm (EMLP). Finally, we test and validate our results by conducting numerical simulations. Using the American aviation network and nematode neural network as two real-world examples, we verify the feasibility and effectiveness of the proposed EMLP algorithm by comparing the AUC value and the Recall rate. Simulations reveal that the link predictions of the EMLP method proposed in this paper have better stability and accuracy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2019.106978</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2020-01, Vol.166, p.106978, Article 106978 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_2366556892 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Computer simulation Ensemble-model Link prediction of complex networks Logistic regression Mathematical models Nematodes Neural networks Regression analysis Similarity Similarity index Stability Stacking Stacking technology |
title | Ensemble-model-based link prediction of complex networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble-model-based%20link%20prediction%20of%20complex%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Li,%20Kuanyang&rft.date=2020-01-15&rft.volume=166&rft.spage=106978&rft.pages=106978-&rft.artnum=106978&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2019.106978&rft_dat=%3Cproquest_cross%3E2366556892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366556892&rft_id=info:pmid/&rft_els_id=S1389128619308710&rfr_iscdi=true |