Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance

Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4‐C6H4OMe)}2] [R=H (1), C3H7 (2)] and [Ni{S2P(OR)(4‐C6H4OEt}2] [R=(C6H5)2CH (3)] is described; their structures were confirmed by single‐crystal X‐ray studies. These complexes were subjected to surfactant/s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-02, Vol.26 (12), p.2693-2704
Hauptverfasser: Ayom, Gwaza E., Khan, Malik D., Ingsel, Tenzin, Lin, Wang, Gupta, Ram K., Zamisa, Sizwe J., Zyl, Werner E., Revaprasadu, Neerish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2704
container_issue 12
container_start_page 2693
container_title Chemistry : a European journal
container_volume 26
creator Ayom, Gwaza E.
Khan, Malik D.
Ingsel, Tenzin
Lin, Wang
Gupta, Ram K.
Zamisa, Sizwe J.
Zyl, Werner E.
Revaprasadu, Neerish
description Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4‐C6H4OMe)}2] [R=H (1), C3H7 (2)] and [Ni{S2P(OR)(4‐C6H4OEt}2] [R=(C6H5)2CH (3)] is described; their structures were confirmed by single‐crystal X‐ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri‐octylphosphine oxide/1‐octadecene (TOPO/ODE), TOPO/tri‐n‐octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent‐less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations. Just as good or better: Molecular precursors were used to prepare selectively nickel phosphide or nickel sulfide nanoparticles. Different phosphide and sulfide phases were prepared by controlling the reaction parameters and the performance of the different phases was investigated for energy storage and energy generation applications.
doi_str_mv 10.1002/chem.201904583
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366397454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366397454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3773-c64e63954ee3ad4dba00ffd62afd10ef47194b7c9026e34cdfaef8f57a9d71f13</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhi0EgkB77RFZ4rzBXnvX8RGlpCABRaJVjyvHHjcGZ73Yu5S8QR-7XiXQI6cZjb_5xvoR-kLJlBJSnusVrKcloZLwasb20IRWJS2YqKt9NCGSi6KumDxCxyk9EkJkzdghOmJUCDajdIL-Ljy8uqUHfBs86MGriO9jbmIKMWEbIn6A_NC7F8BfQYd1F5LrXWhxH_Cd00_g8cPgrTOAM7yb3K9C6lbjbDT8Uj1kT-dd37v2N1atyTsdRK06pV2vWg2f0IFVPsHnXT1BPxeXP-ZXxc33b9fzi5tCs_znQtccaiYrDsCU4WapCLHW1KWyhhKwXFDJl0JLUtbAuDZWgZ3ZSihpBLWUnaCzrbeL4XmA1DePYYhtPtmUrM5qwSueqemW0jGkFME2XXRrFTcNJc0YfDMG37wHnxdOd9phuQbzjr8lnQG5Bf44D5sPdM386vL2v_wfQHmSyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366397454</pqid></control><display><type>article</type><title>Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ayom, Gwaza E. ; Khan, Malik D. ; Ingsel, Tenzin ; Lin, Wang ; Gupta, Ram K. ; Zamisa, Sizwe J. ; Zyl, Werner E. ; Revaprasadu, Neerish</creator><creatorcontrib>Ayom, Gwaza E. ; Khan, Malik D. ; Ingsel, Tenzin ; Lin, Wang ; Gupta, Ram K. ; Zamisa, Sizwe J. ; Zyl, Werner E. ; Revaprasadu, Neerish</creatorcontrib><description>Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4‐C6H4OMe)}2] [R=H (1), C3H7 (2)] and [Ni{S2P(OR)(4‐C6H4OEt}2] [R=(C6H5)2CH (3)] is described; their structures were confirmed by single‐crystal X‐ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri‐octylphosphine oxide/1‐octadecene (TOPO/ODE), TOPO/tri‐n‐octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent‐less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations. Just as good or better: Molecular precursors were used to prepare selectively nickel phosphide or nickel sulfide nanoparticles. Different phosphide and sulfide phases were prepared by controlling the reaction parameters and the performance of the different phases was investigated for energy storage and energy generation applications.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904583</identifier><identifier>PMID: 31773811</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Crystal structure ; Current density ; Decomposition ; energy generation ; energy storage ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Nickel ; Nickel sulfide ; oxygen evolution reaction ; Oxygen evolution reactions ; Phosphides ; Phosphorus ; Precursors ; Solvents ; Sulfides ; supercapacitance ; Water splitting</subject><ispartof>Chemistry : a European journal, 2020-02, Vol.26 (12), p.2693-2704</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3773-c64e63954ee3ad4dba00ffd62afd10ef47194b7c9026e34cdfaef8f57a9d71f13</citedby><cites>FETCH-LOGICAL-c3773-c64e63954ee3ad4dba00ffd62afd10ef47194b7c9026e34cdfaef8f57a9d71f13</cites><orcidid>0000-0001-5730-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201904583$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201904583$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31773811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayom, Gwaza E.</creatorcontrib><creatorcontrib>Khan, Malik D.</creatorcontrib><creatorcontrib>Ingsel, Tenzin</creatorcontrib><creatorcontrib>Lin, Wang</creatorcontrib><creatorcontrib>Gupta, Ram K.</creatorcontrib><creatorcontrib>Zamisa, Sizwe J.</creatorcontrib><creatorcontrib>Zyl, Werner E.</creatorcontrib><creatorcontrib>Revaprasadu, Neerish</creatorcontrib><title>Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4‐C6H4OMe)}2] [R=H (1), C3H7 (2)] and [Ni{S2P(OR)(4‐C6H4OEt}2] [R=(C6H5)2CH (3)] is described; their structures were confirmed by single‐crystal X‐ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri‐octylphosphine oxide/1‐octadecene (TOPO/ODE), TOPO/tri‐n‐octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent‐less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations. Just as good or better: Molecular precursors were used to prepare selectively nickel phosphide or nickel sulfide nanoparticles. Different phosphide and sulfide phases were prepared by controlling the reaction parameters and the performance of the different phases was investigated for energy storage and energy generation applications.</description><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Current density</subject><subject>Decomposition</subject><subject>energy generation</subject><subject>energy storage</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Nickel</subject><subject>Nickel sulfide</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Phosphides</subject><subject>Phosphorus</subject><subject>Precursors</subject><subject>Solvents</subject><subject>Sulfides</subject><subject>supercapacitance</subject><subject>Water splitting</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhi0EgkB77RFZ4rzBXnvX8RGlpCABRaJVjyvHHjcGZ73Yu5S8QR-7XiXQI6cZjb_5xvoR-kLJlBJSnusVrKcloZLwasb20IRWJS2YqKt9NCGSi6KumDxCxyk9EkJkzdghOmJUCDajdIL-Ljy8uqUHfBs86MGriO9jbmIKMWEbIn6A_NC7F8BfQYd1F5LrXWhxH_Cd00_g8cPgrTOAM7yb3K9C6lbjbDT8Uj1kT-dd37v2N1atyTsdRK06pV2vWg2f0IFVPsHnXT1BPxeXP-ZXxc33b9fzi5tCs_znQtccaiYrDsCU4WapCLHW1KWyhhKwXFDJl0JLUtbAuDZWgZ3ZSihpBLWUnaCzrbeL4XmA1DePYYhtPtmUrM5qwSueqemW0jGkFME2XXRrFTcNJc0YfDMG37wHnxdOd9phuQbzjr8lnQG5Bf44D5sPdM386vL2v_wfQHmSyg</recordid><startdate>20200226</startdate><enddate>20200226</enddate><creator>Ayom, Gwaza E.</creator><creator>Khan, Malik D.</creator><creator>Ingsel, Tenzin</creator><creator>Lin, Wang</creator><creator>Gupta, Ram K.</creator><creator>Zamisa, Sizwe J.</creator><creator>Zyl, Werner E.</creator><creator>Revaprasadu, Neerish</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-5730-1232</orcidid></search><sort><creationdate>20200226</creationdate><title>Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance</title><author>Ayom, Gwaza E. ; Khan, Malik D. ; Ingsel, Tenzin ; Lin, Wang ; Gupta, Ram K. ; Zamisa, Sizwe J. ; Zyl, Werner E. ; Revaprasadu, Neerish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3773-c64e63954ee3ad4dba00ffd62afd10ef47194b7c9026e34cdfaef8f57a9d71f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Current density</topic><topic>Decomposition</topic><topic>energy generation</topic><topic>energy storage</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Nickel</topic><topic>Nickel sulfide</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Phosphides</topic><topic>Phosphorus</topic><topic>Precursors</topic><topic>Solvents</topic><topic>Sulfides</topic><topic>supercapacitance</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayom, Gwaza E.</creatorcontrib><creatorcontrib>Khan, Malik D.</creatorcontrib><creatorcontrib>Ingsel, Tenzin</creatorcontrib><creatorcontrib>Lin, Wang</creatorcontrib><creatorcontrib>Gupta, Ram K.</creatorcontrib><creatorcontrib>Zamisa, Sizwe J.</creatorcontrib><creatorcontrib>Zyl, Werner E.</creatorcontrib><creatorcontrib>Revaprasadu, Neerish</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayom, Gwaza E.</au><au>Khan, Malik D.</au><au>Ingsel, Tenzin</au><au>Lin, Wang</au><au>Gupta, Ram K.</au><au>Zamisa, Sizwe J.</au><au>Zyl, Werner E.</au><au>Revaprasadu, Neerish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-02-26</date><risdate>2020</risdate><volume>26</volume><issue>12</issue><spage>2693</spage><epage>2704</epage><pages>2693-2704</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4‐C6H4OMe)}2] [R=H (1), C3H7 (2)] and [Ni{S2P(OR)(4‐C6H4OEt}2] [R=(C6H5)2CH (3)] is described; their structures were confirmed by single‐crystal X‐ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri‐octylphosphine oxide/1‐octadecene (TOPO/ODE), TOPO/tri‐n‐octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent‐less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations. Just as good or better: Molecular precursors were used to prepare selectively nickel phosphide or nickel sulfide nanoparticles. Different phosphide and sulfide phases were prepared by controlling the reaction parameters and the performance of the different phases was investigated for energy storage and energy generation applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31773811</pmid><doi>10.1002/chem.201904583</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5730-1232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-02, Vol.26 (12), p.2693-2704
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_2366397454
source Wiley Online Library Journals Frontfile Complete
subjects Chemistry
Crystal structure
Current density
Decomposition
energy generation
energy storage
hydrogen evolution reaction
Hydrogen evolution reactions
Nickel
Nickel sulfide
oxygen evolution reaction
Oxygen evolution reactions
Phosphides
Phosphorus
Precursors
Solvents
Sulfides
supercapacitance
Water splitting
title Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Molecular%20Precursors%20for%20Selective%20Decomposition%20to%20Nickel%20Sulfide%20or%20Nickel%20Phosphide%20for%20Water%20Splitting%20and%20Supercapacitance&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ayom,%20Gwaza%20E.&rft.date=2020-02-26&rft.volume=26&rft.issue=12&rft.spage=2693&rft.epage=2704&rft.pages=2693-2704&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904583&rft_dat=%3Cproquest_cross%3E2366397454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366397454&rft_id=info:pmid/31773811&rfr_iscdi=true