A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest

We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ−1, and previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-05, Vol.876 (1)
Hauptverfasser: Hiss, Hector, Walther, Michael, Oñorbe, Jose, Hennawi, Joseph F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Astrophysical journal
container_volume 876
creator Hiss, Hector
Walther, Michael
Oñorbe, Jose
Hennawi, Joseph F
description We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ−1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the b –N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method’s robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure \(\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}\) and \(\gamma ={1.49}_{-0.074}^{+0.073}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on \(\mathrm{log}{T}_{0}\) (γ) nearly two (three) times higher for current data set sizes.
doi_str_mv 10.3847/1538-4357/ab1418
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2365967520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365967520</sourcerecordid><originalsourceid>FETCH-proquest_journals_23659675203</originalsourceid><addsrcrecordid>eNqNjDtOAzEQhi0EEsujpxyJeol3vc8yIiRBIikgSHSRDbPE0bIOYxspHXdA4h5chENwEkxEqKnm_2e-bxg7SfiZqLKyl-SiijORlz2pkiypdlj0t9plEec8iwtR3u2zA2uXPzWt64i992FqXrCFGyedtk7fyxYm6BbmARpDIUrrSXeP4BYIM3xaIUnnCb9e3wbYWe3WcI1tcE0HuttQl6MJ3NqtowI5HYOGQXhPWvkNahroK2tIIdmtd7X-_IChIbTuiO01srV4_DsP2enwYnY-jldknn0A5kvjqQuneSqKvC7KPOXif9Q3MVlgsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365967520</pqid></control><display><type>article</type><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F</creator><creatorcontrib>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F</creatorcontrib><description>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ−1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the b –N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method’s robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure \(\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}\) and \(\gamma ={1.49}_{-0.074}^{+0.073}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on \(\mathrm{log}{T}_{0}\) (γ) nearly two (three) times higher for current data set sizes.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab1418</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Absorbers ; Astrophysics ; Computer simulation ; Decomposition ; Density ; Emulators ; Forests ; Intergalactic media ; Markov chains ; Monte Carlo simulation ; Parameter sensitivity ; Probability density functions ; Statistical analysis ; Statistical methods ; Systematics ; Temperature ; Thermal simulation ; Thermodynamic properties</subject><ispartof>The Astrophysical journal, 2019-05, Vol.876 (1)</ispartof><rights>Copyright IOP Publishing May 01, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, Jose</creatorcontrib><creatorcontrib>Hennawi, Joseph F</creatorcontrib><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest</title><title>The Astrophysical journal</title><description>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ−1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the b –N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method’s robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure \(\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}\) and \(\gamma ={1.49}_{-0.074}^{+0.073}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on \(\mathrm{log}{T}_{0}\) (γ) nearly two (three) times higher for current data set sizes.</description><subject>Absorbers</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Density</subject><subject>Emulators</subject><subject>Forests</subject><subject>Intergalactic media</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Parameter sensitivity</subject><subject>Probability density functions</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Systematics</subject><subject>Temperature</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjDtOAzEQhi0EEsujpxyJeol3vc8yIiRBIikgSHSRDbPE0bIOYxspHXdA4h5chENwEkxEqKnm_2e-bxg7SfiZqLKyl-SiijORlz2pkiypdlj0t9plEec8iwtR3u2zA2uXPzWt64i992FqXrCFGyedtk7fyxYm6BbmARpDIUrrSXeP4BYIM3xaIUnnCb9e3wbYWe3WcI1tcE0HuttQl6MJ3NqtowI5HYOGQXhPWvkNahroK2tIIdmtd7X-_IChIbTuiO01srV4_DsP2enwYnY-jldknn0A5kvjqQuneSqKvC7KPOXif9Q3MVlgsg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Hiss, Hector</creator><creator>Walther, Michael</creator><creator>Oñorbe, Jose</creator><creator>Hennawi, Joseph F</creator><general>IOP Publishing</general><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20190501</creationdate><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest</title><author>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23659675203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Density</topic><topic>Emulators</topic><topic>Forests</topic><topic>Intergalactic media</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Parameter sensitivity</topic><topic>Probability density functions</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Systematics</topic><topic>Temperature</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, Jose</creatorcontrib><creatorcontrib>Hennawi, Joseph F</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiss, Hector</au><au>Walther, Michael</au><au>Oñorbe, Jose</au><au>Hennawi, Joseph F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest</atitle><jtitle>The Astrophysical journal</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>876</volume><issue>1</issue><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ−1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the b –N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method’s robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure \(\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}\) and \(\gamma ={1.49}_{-0.074}^{+0.073}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on \(\mathrm{log}{T}_{0}\) (γ) nearly two (three) times higher for current data set sizes.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/ab1418</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-05, Vol.876 (1)
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365967520
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Absorbers
Astrophysics
Computer simulation
Decomposition
Density
Emulators
Forests
Intergalactic media
Markov chains
Monte Carlo simulation
Parameter sensitivity
Probability density functions
Statistical analysis
Statistical methods
Systematics
Temperature
Thermal simulation
Thermodynamic properties
title A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NH i Distribution of Absorbers in the Lyα Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Statistical%20Method%20for%20Measuring%20the%20Temperature%E2%80%93Density%20Relation%20in%20the%20IGM%20Using%20the%20b%E2%80%93NH%20i%20Distribution%20of%20Absorbers%20in%20the%20Ly%CE%B1%20Forest&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hiss,%20Hector&rft.date=2019-05-01&rft.volume=876&rft.issue=1&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab1418&rft_dat=%3Cproquest%3E2365967520%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365967520&rft_id=info:pmid/&rfr_iscdi=true