Apex Dips of Experimental Flux Ropes: Helix or Cusp?

We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-10, Vol.848 (2), p.89
Hauptverfasser: Wongwaitayakornkul, Pakorn, Haw, Magnus A., Li, Hui, Li, Shengtai, Bellan, Paul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 89
container_title The Astrophysical journal
container_volume 848
creator Wongwaitayakornkul, Pakorn
Haw, Magnus A.
Li, Hui
Li, Shengtai
Bellan, Paul M.
description We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.
doi_str_mv 10.3847/1538-4357/aa8990
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365908927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365908927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-807f1778af4b2a73f64d20cbb911cc39d91d51c97462626fd5f17031200b33333</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePQb1aN18tUm8yLLuqrAgiIK3kKYJdqlNbFqo_96Wil7EmcMwwzMvMy8ApxhdUcH4AqdUJIymfKG1kBLtgdnPaB_MEEIsySh_PQRHMe7Glkg5A2wZbA9vyxChd3DdB9uU77ZudQU3VdfDJx9svIb3tip76Bu46mK4OQYHTlfRnnzXOXjZrJ9X98n28e5htdwmhqGsTQTiDnMutGM50Zy6jBUEmTyXGBtDZSFxkWIjOcvIkK5IBxxRTBDK6RhzcDbp-tiWKpqytebN-Lq2plU45UwyMkDnExQa_9HZ2Kqd75p6uEsRmqUSCUn4QKGJMo2PsbFOheFR3XwqjNRooBrdUqNbajJwWLmcVkoffjX_wS_-wHXYKcGEIkpIFQpHvwBVRXni</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365908927</pqid></control><display><type>article</type><title>Apex Dips of Experimental Flux Ropes: Helix or Cusp?</title><source>Institute of Physics Open Access Journal Titles</source><creator>Wongwaitayakornkul, Pakorn ; Haw, Magnus A. ; Li, Hui ; Li, Shengtai ; Bellan, Paul M.</creator><creatorcontrib>Wongwaitayakornkul, Pakorn ; Haw, Magnus A. ; Li, Hui ; Li, Shengtai ; Bellan, Paul M. ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8990</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Computer simulation ; Cones ; Cusps ; Density ; Fluctuations ; magnetohydrodynamics (MHD) ; methods: laboratory: atomic ; methods: numerical ; Neutral gases ; Nozzles ; plasmas ; Sun: filaments, prominences</subject><ispartof>The Astrophysical journal, 2017-10, Vol.848 (2), p.89</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-807f1778af4b2a73f64d20cbb911cc39d91d51c97462626fd5f17031200b33333</citedby><cites>FETCH-LOGICAL-c406t-807f1778af4b2a73f64d20cbb911cc39d91d51c97462626fd5f17031200b33333</cites><orcidid>0000-0001-5739-5160 ; 0000-0003-3556-6568 ; 0000000157395160 ; 0000000335566568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8990/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa8990$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1574942$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wongwaitayakornkul, Pakorn</creatorcontrib><creatorcontrib>Haw, Magnus A.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Shengtai</creatorcontrib><creatorcontrib>Bellan, Paul M.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Apex Dips of Experimental Flux Ropes: Helix or Cusp?</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Computer simulation</subject><subject>Cones</subject><subject>Cusps</subject><subject>Density</subject><subject>Fluctuations</subject><subject>magnetohydrodynamics (MHD)</subject><subject>methods: laboratory: atomic</subject><subject>methods: numerical</subject><subject>Neutral gases</subject><subject>Nozzles</subject><subject>plasmas</subject><subject>Sun: filaments, prominences</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePQb1aN18tUm8yLLuqrAgiIK3kKYJdqlNbFqo_96Wil7EmcMwwzMvMy8ApxhdUcH4AqdUJIymfKG1kBLtgdnPaB_MEEIsySh_PQRHMe7Glkg5A2wZbA9vyxChd3DdB9uU77ZudQU3VdfDJx9svIb3tip76Bu46mK4OQYHTlfRnnzXOXjZrJ9X98n28e5htdwmhqGsTQTiDnMutGM50Zy6jBUEmTyXGBtDZSFxkWIjOcvIkK5IBxxRTBDK6RhzcDbp-tiWKpqytebN-Lq2plU45UwyMkDnExQa_9HZ2Kqd75p6uEsRmqUSCUn4QKGJMo2PsbFOheFR3XwqjNRooBrdUqNbajJwWLmcVkoffjX_wS_-wHXYKcGEIkpIFQpHvwBVRXni</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Wongwaitayakornkul, Pakorn</creator><creator>Haw, Magnus A.</creator><creator>Li, Hui</creator><creator>Li, Shengtai</creator><creator>Bellan, Paul M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5739-5160</orcidid><orcidid>https://orcid.org/0000-0003-3556-6568</orcidid><orcidid>https://orcid.org/0000000157395160</orcidid><orcidid>https://orcid.org/0000000335566568</orcidid></search><sort><creationdate>20171020</creationdate><title>Apex Dips of Experimental Flux Ropes: Helix or Cusp?</title><author>Wongwaitayakornkul, Pakorn ; Haw, Magnus A. ; Li, Hui ; Li, Shengtai ; Bellan, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-807f1778af4b2a73f64d20cbb911cc39d91d51c97462626fd5f17031200b33333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Computer simulation</topic><topic>Cones</topic><topic>Cusps</topic><topic>Density</topic><topic>Fluctuations</topic><topic>magnetohydrodynamics (MHD)</topic><topic>methods: laboratory: atomic</topic><topic>methods: numerical</topic><topic>Neutral gases</topic><topic>Nozzles</topic><topic>plasmas</topic><topic>Sun: filaments, prominences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wongwaitayakornkul, Pakorn</creatorcontrib><creatorcontrib>Haw, Magnus A.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Shengtai</creatorcontrib><creatorcontrib>Bellan, Paul M.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wongwaitayakornkul, Pakorn</au><au>Haw, Magnus A.</au><au>Li, Hui</au><au>Li, Shengtai</au><au>Bellan, Paul M.</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apex Dips of Experimental Flux Ropes: Helix or Cusp?</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-10-20</date><risdate>2017</risdate><volume>848</volume><issue>2</issue><spage>89</spage><pages>89-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8990</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5739-5160</orcidid><orcidid>https://orcid.org/0000-0003-3556-6568</orcidid><orcidid>https://orcid.org/0000000157395160</orcidid><orcidid>https://orcid.org/0000000335566568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-10, Vol.848 (2), p.89
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2365908927
source Institute of Physics Open Access Journal Titles
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
Computer simulation
Cones
Cusps
Density
Fluctuations
magnetohydrodynamics (MHD)
methods: laboratory: atomic
methods: numerical
Neutral gases
Nozzles
plasmas
Sun: filaments, prominences
title Apex Dips of Experimental Flux Ropes: Helix or Cusp?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apex%20Dips%20of%20Experimental%20Flux%20Ropes:%20Helix%20or%20Cusp?&rft.jtitle=The%20Astrophysical%20journal&rft.au=Wongwaitayakornkul,%20Pakorn&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2017-10-20&rft.volume=848&rft.issue=2&rft.spage=89&rft.pages=89-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8990&rft_dat=%3Cproquest_O3W%3E2365908927%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365908927&rft_id=info:pmid/&rfr_iscdi=true