The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-04, Vol.857 (1), p.43
Hauptverfasser: Vafin, S., Rafighi, I., Pohl, M., Niemiec, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 43
container_title The Astrophysical journal
container_volume 857
creator Vafin, S.
Rafighi, I.
Pohl, M.
Niemiec, J.
description This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.
doi_str_mv 10.3847/1538-4357/aab552
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365896961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365896961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRxDm9eyTRo3W0QEeP7oe6ZInGbIk3QuERWWpboTvMv16aGr3oicf7ft73wRehy5TcUsGmk5RTkTDKpxOlSs6zIzT6aR2jESGEJTmdvp6isxB2_TUrihHabt4ALyvQnW9Cpzqn8aqORekq1x2wbTx-AVW50CvPynm8iLV35b5zTR2wq_GsUp_KT5azNZ6roJWBcI5OrKoCXHyfY7S9X27mj8n66WE1v1snmjHeJTaDQpQCNLMUmDVE5EID0ZTyIrfckiIthebaRE1wY6kGkwGYkoLgzBg6RleDb-ubjz2ETu6ava_jSpnRnIsiL_I0UmSgdPxj8GBl69278geZEtmHJ_ukZJ-UHMKLI9fDiGvaX0_V7qSIUBpZ2cb3jNHNH9i_rl_8MH43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365896961</pqid></control><display><type>article</type><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><source>IOP Publishing Free Content</source><creator>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</creator><creatorcontrib>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</creatorcontrib><description>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab552</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Beams (radiation) ; Blazars ; Computer simulation ; Distribution functions ; Elastic scattering ; Energy dissipation ; Energy distribution ; Gamma rays ; gamma rays: general ; Growth rate ; instabilities ; Instability ; Intergalactic media ; Linear analysis ; magnetic fields ; Parameters ; relativistic processes ; Simulation ; Stability ; waves</subject><ispartof>The Astrophysical journal, 2018-04, Vol.857 (1), p.43</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</citedby><cites>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</cites><orcidid>0000-0001-6036-8569 ; 0000-0001-7861-1707 ; 0000-0003-2368-2801 ; 0000-0002-0505-9971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab552/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab552$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Vafin, S.</creatorcontrib><creatorcontrib>Rafighi, I.</creatorcontrib><creatorcontrib>Pohl, M.</creatorcontrib><creatorcontrib>Niemiec, J.</creatorcontrib><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</description><subject>Astrophysics</subject><subject>Beams (radiation)</subject><subject>Blazars</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Elastic scattering</subject><subject>Energy dissipation</subject><subject>Energy distribution</subject><subject>Gamma rays</subject><subject>gamma rays: general</subject><subject>Growth rate</subject><subject>instabilities</subject><subject>Instability</subject><subject>Intergalactic media</subject><subject>Linear analysis</subject><subject>magnetic fields</subject><subject>Parameters</subject><subject>relativistic processes</subject><subject>Simulation</subject><subject>Stability</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAUx4nRxDm9eyTRo3W0QEeP7oe6ZInGbIk3QuERWWpboTvMv16aGr3oicf7ft73wRehy5TcUsGmk5RTkTDKpxOlSs6zIzT6aR2jESGEJTmdvp6isxB2_TUrihHabt4ALyvQnW9Cpzqn8aqORekq1x2wbTx-AVW50CvPynm8iLV35b5zTR2wq_GsUp_KT5azNZ6roJWBcI5OrKoCXHyfY7S9X27mj8n66WE1v1snmjHeJTaDQpQCNLMUmDVE5EID0ZTyIrfckiIthebaRE1wY6kGkwGYkoLgzBg6RleDb-ubjz2ETu6ava_jSpnRnIsiL_I0UmSgdPxj8GBl69278geZEtmHJ_ukZJ-UHMKLI9fDiGvaX0_V7qSIUBpZ2cb3jNHNH9i_rl_8MH43</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Vafin, S.</creator><creator>Rafighi, I.</creator><creator>Pohl, M.</creator><creator>Niemiec, J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><orcidid>https://orcid.org/0000-0003-2368-2801</orcidid><orcidid>https://orcid.org/0000-0002-0505-9971</orcidid></search><sort><creationdate>20180410</creationdate><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><author>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Beams (radiation)</topic><topic>Blazars</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Elastic scattering</topic><topic>Energy dissipation</topic><topic>Energy distribution</topic><topic>Gamma rays</topic><topic>gamma rays: general</topic><topic>Growth rate</topic><topic>instabilities</topic><topic>Instability</topic><topic>Intergalactic media</topic><topic>Linear analysis</topic><topic>magnetic fields</topic><topic>Parameters</topic><topic>relativistic processes</topic><topic>Simulation</topic><topic>Stability</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vafin, S.</creatorcontrib><creatorcontrib>Rafighi, I.</creatorcontrib><creatorcontrib>Pohl, M.</creatorcontrib><creatorcontrib>Niemiec, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vafin, S.</au><au>Rafighi, I.</au><au>Pohl, M.</au><au>Niemiec, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>857</volume><issue>1</issue><spage>43</spage><pages>43-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab552</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><orcidid>https://orcid.org/0000-0003-2368-2801</orcidid><orcidid>https://orcid.org/0000-0002-0505-9971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-04, Vol.857 (1), p.43
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365896961
source IOP Publishing Free Content
subjects Astrophysics
Beams (radiation)
Blazars
Computer simulation
Distribution functions
Elastic scattering
Energy dissipation
Energy distribution
Gamma rays
gamma rays: general
Growth rate
instabilities
Instability
Intergalactic media
Linear analysis
magnetic fields
Parameters
relativistic processes
Simulation
Stability
waves
title The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrostatic%20Instability%20for%20Realistic%20Pair%20Distributions%20in%20Blazar/EBL%20Cascades&rft.jtitle=The%20Astrophysical%20journal&rft.au=Vafin,%20S.&rft.date=2018-04-10&rft.volume=857&rft.issue=1&rft.spage=43&rft.pages=43-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab552&rft_dat=%3Cproquest_O3W%3E2365896961%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365896961&rft_id=info:pmid/&rfr_iscdi=true