The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades
This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays wi...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-04, Vol.857 (1), p.43 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | The Astrophysical journal |
container_volume | 857 |
creator | Vafin, S. Rafighi, I. Pohl, M. Niemiec, J. |
description | This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required. |
doi_str_mv | 10.3847/1538-4357/aab552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365896961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365896961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</originalsourceid><addsrcrecordid>eNp1kM9PwyAUx4nRxDm9eyTRo3W0QEeP7oe6ZInGbIk3QuERWWpboTvMv16aGr3oicf7ft73wRehy5TcUsGmk5RTkTDKpxOlSs6zIzT6aR2jESGEJTmdvp6isxB2_TUrihHabt4ALyvQnW9Cpzqn8aqORekq1x2wbTx-AVW50CvPynm8iLV35b5zTR2wq_GsUp_KT5azNZ6roJWBcI5OrKoCXHyfY7S9X27mj8n66WE1v1snmjHeJTaDQpQCNLMUmDVE5EID0ZTyIrfckiIthebaRE1wY6kGkwGYkoLgzBg6RleDb-ubjz2ETu6ava_jSpnRnIsiL_I0UmSgdPxj8GBl69278geZEtmHJ_ukZJ-UHMKLI9fDiGvaX0_V7qSIUBpZ2cb3jNHNH9i_rl_8MH43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365896961</pqid></control><display><type>article</type><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><source>IOP Publishing Free Content</source><creator>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</creator><creatorcontrib>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</creatorcontrib><description>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab552</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Beams (radiation) ; Blazars ; Computer simulation ; Distribution functions ; Elastic scattering ; Energy dissipation ; Energy distribution ; Gamma rays ; gamma rays: general ; Growth rate ; instabilities ; Instability ; Intergalactic media ; Linear analysis ; magnetic fields ; Parameters ; relativistic processes ; Simulation ; Stability ; waves</subject><ispartof>The Astrophysical journal, 2018-04, Vol.857 (1), p.43</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</citedby><cites>FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</cites><orcidid>0000-0001-6036-8569 ; 0000-0001-7861-1707 ; 0000-0003-2368-2801 ; 0000-0002-0505-9971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab552/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab552$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Vafin, S.</creatorcontrib><creatorcontrib>Rafighi, I.</creatorcontrib><creatorcontrib>Pohl, M.</creatorcontrib><creatorcontrib>Niemiec, J.</creatorcontrib><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</description><subject>Astrophysics</subject><subject>Beams (radiation)</subject><subject>Blazars</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Elastic scattering</subject><subject>Energy dissipation</subject><subject>Energy distribution</subject><subject>Gamma rays</subject><subject>gamma rays: general</subject><subject>Growth rate</subject><subject>instabilities</subject><subject>Instability</subject><subject>Intergalactic media</subject><subject>Linear analysis</subject><subject>magnetic fields</subject><subject>Parameters</subject><subject>relativistic processes</subject><subject>Simulation</subject><subject>Stability</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAUx4nRxDm9eyTRo3W0QEeP7oe6ZInGbIk3QuERWWpboTvMv16aGr3oicf7ft73wRehy5TcUsGmk5RTkTDKpxOlSs6zIzT6aR2jESGEJTmdvp6isxB2_TUrihHabt4ALyvQnW9Cpzqn8aqORekq1x2wbTx-AVW50CvPynm8iLV35b5zTR2wq_GsUp_KT5azNZ6roJWBcI5OrKoCXHyfY7S9X27mj8n66WE1v1snmjHeJTaDQpQCNLMUmDVE5EID0ZTyIrfckiIthebaRE1wY6kGkwGYkoLgzBg6RleDb-ubjz2ETu6ava_jSpnRnIsiL_I0UmSgdPxj8GBl69278geZEtmHJ_ukZJ-UHMKLI9fDiGvaX0_V7qSIUBpZ2cb3jNHNH9i_rl_8MH43</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Vafin, S.</creator><creator>Rafighi, I.</creator><creator>Pohl, M.</creator><creator>Niemiec, J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><orcidid>https://orcid.org/0000-0003-2368-2801</orcidid><orcidid>https://orcid.org/0000-0002-0505-9971</orcidid></search><sort><creationdate>20180410</creationdate><title>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</title><author>Vafin, S. ; Rafighi, I. ; Pohl, M. ; Niemiec, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f2e98b8ec4f3e4fd0868ce0c33596f5f091b8c5cd4fd85df3ced2eedb3e854dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Beams (radiation)</topic><topic>Blazars</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Elastic scattering</topic><topic>Energy dissipation</topic><topic>Energy distribution</topic><topic>Gamma rays</topic><topic>gamma rays: general</topic><topic>Growth rate</topic><topic>instabilities</topic><topic>Instability</topic><topic>Intergalactic media</topic><topic>Linear analysis</topic><topic>magnetic fields</topic><topic>Parameters</topic><topic>relativistic processes</topic><topic>Simulation</topic><topic>Stability</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vafin, S.</creatorcontrib><creatorcontrib>Rafighi, I.</creatorcontrib><creatorcontrib>Pohl, M.</creatorcontrib><creatorcontrib>Niemiec, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vafin, S.</au><au>Rafighi, I.</au><au>Pohl, M.</au><au>Niemiec, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>857</volume><issue>1</issue><spage>43</spage><pages>43-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab552</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><orcidid>https://orcid.org/0000-0003-2368-2801</orcidid><orcidid>https://orcid.org/0000-0002-0505-9971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-04, Vol.857 (1), p.43 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365896961 |
source | IOP Publishing Free Content |
subjects | Astrophysics Beams (radiation) Blazars Computer simulation Distribution functions Elastic scattering Energy dissipation Energy distribution Gamma rays gamma rays: general Growth rate instabilities Instability Intergalactic media Linear analysis magnetic fields Parameters relativistic processes Simulation Stability waves |
title | The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrostatic%20Instability%20for%20Realistic%20Pair%20Distributions%20in%20Blazar/EBL%20Cascades&rft.jtitle=The%20Astrophysical%20journal&rft.au=Vafin,%20S.&rft.date=2018-04-10&rft.volume=857&rft.issue=1&rft.spage=43&rft.pages=43-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab552&rft_dat=%3Cproquest_O3W%3E2365896961%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365896961&rft_id=info:pmid/&rfr_iscdi=true |