Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere
We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting fo...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-05, Vol.858 (2), p.81 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 81 |
container_title | The Astrophysical journal |
container_volume | 858 |
creator | Brambilla, Gabriele Kalapotharakos, Constantinos Timokhin, Andrey N. Harding, Alice K. Kazanas, Demosthenes |
description | We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others. |
doi_str_mv | 10.3847/1538-4357/aab3e1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365881243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365881243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4MoOKd3jwE9WpfvpkcpmwqT7aDgLaRJ6jq6piYt4n9vS0Uv4un94Pm9LzwAXGJ0SyVLF5hTmTDK04XWBXX4CMx-VsdghhBiiaDp6yk4i3E_jiTLZmCzrJ3pgm-SrY_V2MCtrgJc1f4D6sbCvA_BNR3M_aEdiWogqgZ2Owe3fR11gE_6rXGdj-3OBXcOTkpdR3fxXefgZbV8zh-S9eb-Mb9bJ4Yx3iWWWIONNgKXWVpwZGWBUKFTVvKUaisIZy7LdCY0oqUTBjlGpHDcEWtlRg2dg6vpbhv8e-9ip_a-D83wUhEquJSYMDpQaKJM8DEGV6o2VAcdPhVGatSmRkdqdKQmbUPkZopUvv29-Q9-_Qeu272SXCqiJFatLekXTix74g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365881243</pqid></control><display><type>article</type><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><source>IOP Publishing Free Content</source><creator>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</creator><creatorcontrib>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</creatorcontrib><description>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab3e1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>acceleration of particles ; Astrophysics ; Charge density ; Charge distribution ; Computer simulation ; Configurations ; Current density ; Current distribution ; Current sheets ; Cylinders ; Density distribution ; Electrodynamics ; Electromagnetic fields ; Electron-positron plasmas ; Electrons ; Magnetic fields ; Neutron stars ; Pair production ; Particle density (concentration) ; Particle in cell technique ; Particle physics ; Particle trajectories ; plasmas ; Positrons ; Pulsar magnetospheres ; Pulsars ; pulsars: general ; stars: neutron ; Trajectory analysis</subject><ispartof>The Astrophysical journal, 2018-05, Vol.858 (2), p.81</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</citedby><cites>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</cites><orcidid>0000-0001-6119-859X ; 0000-0002-7435-7809 ; 0000-0002-0067-1272 ; 0000-0002-3692-1974 ; 0000-0003-1080-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab3e1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab3e1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Brambilla, Gabriele</creatorcontrib><creatorcontrib>Kalapotharakos, Constantinos</creatorcontrib><creatorcontrib>Timokhin, Andrey N.</creatorcontrib><creatorcontrib>Harding, Alice K.</creatorcontrib><creatorcontrib>Kazanas, Demosthenes</creatorcontrib><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</description><subject>acceleration of particles</subject><subject>Astrophysics</subject><subject>Charge density</subject><subject>Charge distribution</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Current density</subject><subject>Current distribution</subject><subject>Current sheets</subject><subject>Cylinders</subject><subject>Density distribution</subject><subject>Electrodynamics</subject><subject>Electromagnetic fields</subject><subject>Electron-positron plasmas</subject><subject>Electrons</subject><subject>Magnetic fields</subject><subject>Neutron stars</subject><subject>Pair production</subject><subject>Particle density (concentration)</subject><subject>Particle in cell technique</subject><subject>Particle physics</subject><subject>Particle trajectories</subject><subject>plasmas</subject><subject>Positrons</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>pulsars: general</subject><subject>stars: neutron</subject><subject>Trajectory analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYh4MoOKd3jwE9WpfvpkcpmwqT7aDgLaRJ6jq6piYt4n9vS0Uv4un94Pm9LzwAXGJ0SyVLF5hTmTDK04XWBXX4CMx-VsdghhBiiaDp6yk4i3E_jiTLZmCzrJ3pgm-SrY_V2MCtrgJc1f4D6sbCvA_BNR3M_aEdiWogqgZ2Owe3fR11gE_6rXGdj-3OBXcOTkpdR3fxXefgZbV8zh-S9eb-Mb9bJ4Yx3iWWWIONNgKXWVpwZGWBUKFTVvKUaisIZy7LdCY0oqUTBjlGpHDcEWtlRg2dg6vpbhv8e-9ip_a-D83wUhEquJSYMDpQaKJM8DEGV6o2VAcdPhVGatSmRkdqdKQmbUPkZopUvv29-Q9-_Qeu272SXCqiJFatLekXTix74g</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>Brambilla, Gabriele</creator><creator>Kalapotharakos, Constantinos</creator><creator>Timokhin, Andrey N.</creator><creator>Harding, Alice K.</creator><creator>Kazanas, Demosthenes</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6119-859X</orcidid><orcidid>https://orcid.org/0000-0002-7435-7809</orcidid><orcidid>https://orcid.org/0000-0002-0067-1272</orcidid><orcidid>https://orcid.org/0000-0002-3692-1974</orcidid><orcidid>https://orcid.org/0000-0003-1080-5286</orcidid></search><sort><creationdate>20180510</creationdate><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><author>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acceleration of particles</topic><topic>Astrophysics</topic><topic>Charge density</topic><topic>Charge distribution</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Current density</topic><topic>Current distribution</topic><topic>Current sheets</topic><topic>Cylinders</topic><topic>Density distribution</topic><topic>Electrodynamics</topic><topic>Electromagnetic fields</topic><topic>Electron-positron plasmas</topic><topic>Electrons</topic><topic>Magnetic fields</topic><topic>Neutron stars</topic><topic>Pair production</topic><topic>Particle density (concentration)</topic><topic>Particle in cell technique</topic><topic>Particle physics</topic><topic>Particle trajectories</topic><topic>plasmas</topic><topic>Positrons</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>pulsars: general</topic><topic>stars: neutron</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brambilla, Gabriele</creatorcontrib><creatorcontrib>Kalapotharakos, Constantinos</creatorcontrib><creatorcontrib>Timokhin, Andrey N.</creatorcontrib><creatorcontrib>Harding, Alice K.</creatorcontrib><creatorcontrib>Kazanas, Demosthenes</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brambilla, Gabriele</au><au>Kalapotharakos, Constantinos</au><au>Timokhin, Andrey N.</au><au>Harding, Alice K.</au><au>Kazanas, Demosthenes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>858</volume><issue>2</issue><spage>81</spage><pages>81-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab3e1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6119-859X</orcidid><orcidid>https://orcid.org/0000-0002-7435-7809</orcidid><orcidid>https://orcid.org/0000-0002-0067-1272</orcidid><orcidid>https://orcid.org/0000-0002-3692-1974</orcidid><orcidid>https://orcid.org/0000-0003-1080-5286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-05, Vol.858 (2), p.81 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365881243 |
source | IOP Publishing Free Content |
subjects | acceleration of particles Astrophysics Charge density Charge distribution Computer simulation Configurations Current density Current distribution Current sheets Cylinders Density distribution Electrodynamics Electromagnetic fields Electron-positron plasmas Electrons Magnetic fields Neutron stars Pair production Particle density (concentration) Particle in cell technique Particle physics Particle trajectories plasmas Positrons Pulsar magnetospheres Pulsars pulsars: general stars: neutron Trajectory analysis |
title | Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-Positron%20Pair%20Flow%20and%20Current%20Composition%20in%20the%20Pulsar%20Magnetosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Brambilla,%20Gabriele&rft.date=2018-05-10&rft.volume=858&rft.issue=2&rft.spage=81&rft.pages=81-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab3e1&rft_dat=%3Cproquest_O3W%3E2365881243%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365881243&rft_id=info:pmid/&rfr_iscdi=true |