Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere

We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-05, Vol.858 (2), p.81
Hauptverfasser: Brambilla, Gabriele, Kalapotharakos, Constantinos, Timokhin, Andrey N., Harding, Alice K., Kazanas, Demosthenes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 81
container_title The Astrophysical journal
container_volume 858
creator Brambilla, Gabriele
Kalapotharakos, Constantinos
Timokhin, Andrey N.
Harding, Alice K.
Kazanas, Demosthenes
description We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.
doi_str_mv 10.3847/1538-4357/aab3e1
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365881243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365881243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4MoOKd3jwE9WpfvpkcpmwqT7aDgLaRJ6jq6piYt4n9vS0Uv4un94Pm9LzwAXGJ0SyVLF5hTmTDK04XWBXX4CMx-VsdghhBiiaDp6yk4i3E_jiTLZmCzrJ3pgm-SrY_V2MCtrgJc1f4D6sbCvA_BNR3M_aEdiWogqgZ2Owe3fR11gE_6rXGdj-3OBXcOTkpdR3fxXefgZbV8zh-S9eb-Mb9bJ4Yx3iWWWIONNgKXWVpwZGWBUKFTVvKUaisIZy7LdCY0oqUTBjlGpHDcEWtlRg2dg6vpbhv8e-9ip_a-D83wUhEquJSYMDpQaKJM8DEGV6o2VAcdPhVGatSmRkdqdKQmbUPkZopUvv29-Q9-_Qeu272SXCqiJFatLekXTix74g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365881243</pqid></control><display><type>article</type><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><source>IOP Publishing Free Content</source><creator>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</creator><creatorcontrib>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</creatorcontrib><description>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab3e1</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>acceleration of particles ; Astrophysics ; Charge density ; Charge distribution ; Computer simulation ; Configurations ; Current density ; Current distribution ; Current sheets ; Cylinders ; Density distribution ; Electrodynamics ; Electromagnetic fields ; Electron-positron plasmas ; Electrons ; Magnetic fields ; Neutron stars ; Pair production ; Particle density (concentration) ; Particle in cell technique ; Particle physics ; Particle trajectories ; plasmas ; Positrons ; Pulsar magnetospheres ; Pulsars ; pulsars: general ; stars: neutron ; Trajectory analysis</subject><ispartof>The Astrophysical journal, 2018-05, Vol.858 (2), p.81</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</citedby><cites>FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</cites><orcidid>0000-0001-6119-859X ; 0000-0002-7435-7809 ; 0000-0002-0067-1272 ; 0000-0002-3692-1974 ; 0000-0003-1080-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab3e1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab3e1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Brambilla, Gabriele</creatorcontrib><creatorcontrib>Kalapotharakos, Constantinos</creatorcontrib><creatorcontrib>Timokhin, Andrey N.</creatorcontrib><creatorcontrib>Harding, Alice K.</creatorcontrib><creatorcontrib>Kazanas, Demosthenes</creatorcontrib><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</description><subject>acceleration of particles</subject><subject>Astrophysics</subject><subject>Charge density</subject><subject>Charge distribution</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Current density</subject><subject>Current distribution</subject><subject>Current sheets</subject><subject>Cylinders</subject><subject>Density distribution</subject><subject>Electrodynamics</subject><subject>Electromagnetic fields</subject><subject>Electron-positron plasmas</subject><subject>Electrons</subject><subject>Magnetic fields</subject><subject>Neutron stars</subject><subject>Pair production</subject><subject>Particle density (concentration)</subject><subject>Particle in cell technique</subject><subject>Particle physics</subject><subject>Particle trajectories</subject><subject>plasmas</subject><subject>Positrons</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>pulsars: general</subject><subject>stars: neutron</subject><subject>Trajectory analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYh4MoOKd3jwE9WpfvpkcpmwqT7aDgLaRJ6jq6piYt4n9vS0Uv4un94Pm9LzwAXGJ0SyVLF5hTmTDK04XWBXX4CMx-VsdghhBiiaDp6yk4i3E_jiTLZmCzrJ3pgm-SrY_V2MCtrgJc1f4D6sbCvA_BNR3M_aEdiWogqgZ2Owe3fR11gE_6rXGdj-3OBXcOTkpdR3fxXefgZbV8zh-S9eb-Mb9bJ4Yx3iWWWIONNgKXWVpwZGWBUKFTVvKUaisIZy7LdCY0oqUTBjlGpHDcEWtlRg2dg6vpbhv8e-9ip_a-D83wUhEquJSYMDpQaKJM8DEGV6o2VAcdPhVGatSmRkdqdKQmbUPkZopUvv29-Q9-_Qeu272SXCqiJFatLekXTix74g</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>Brambilla, Gabriele</creator><creator>Kalapotharakos, Constantinos</creator><creator>Timokhin, Andrey N.</creator><creator>Harding, Alice K.</creator><creator>Kazanas, Demosthenes</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6119-859X</orcidid><orcidid>https://orcid.org/0000-0002-7435-7809</orcidid><orcidid>https://orcid.org/0000-0002-0067-1272</orcidid><orcidid>https://orcid.org/0000-0002-3692-1974</orcidid><orcidid>https://orcid.org/0000-0003-1080-5286</orcidid></search><sort><creationdate>20180510</creationdate><title>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</title><author>Brambilla, Gabriele ; Kalapotharakos, Constantinos ; Timokhin, Andrey N. ; Harding, Alice K. ; Kazanas, Demosthenes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d2dc1cac61f97b50d8b00ba74f573ad6254e99a96a03fe6c0e4286e5e2dd893c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acceleration of particles</topic><topic>Astrophysics</topic><topic>Charge density</topic><topic>Charge distribution</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Current density</topic><topic>Current distribution</topic><topic>Current sheets</topic><topic>Cylinders</topic><topic>Density distribution</topic><topic>Electrodynamics</topic><topic>Electromagnetic fields</topic><topic>Electron-positron plasmas</topic><topic>Electrons</topic><topic>Magnetic fields</topic><topic>Neutron stars</topic><topic>Pair production</topic><topic>Particle density (concentration)</topic><topic>Particle in cell technique</topic><topic>Particle physics</topic><topic>Particle trajectories</topic><topic>plasmas</topic><topic>Positrons</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>pulsars: general</topic><topic>stars: neutron</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brambilla, Gabriele</creatorcontrib><creatorcontrib>Kalapotharakos, Constantinos</creatorcontrib><creatorcontrib>Timokhin, Andrey N.</creatorcontrib><creatorcontrib>Harding, Alice K.</creatorcontrib><creatorcontrib>Kazanas, Demosthenes</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brambilla, Gabriele</au><au>Kalapotharakos, Constantinos</au><au>Timokhin, Andrey N.</au><au>Harding, Alice K.</au><au>Kazanas, Demosthenes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>858</volume><issue>2</issue><spage>81</spage><pages>81-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron-positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab3e1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6119-859X</orcidid><orcidid>https://orcid.org/0000-0002-7435-7809</orcidid><orcidid>https://orcid.org/0000-0002-0067-1272</orcidid><orcidid>https://orcid.org/0000-0002-3692-1974</orcidid><orcidid>https://orcid.org/0000-0003-1080-5286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-05, Vol.858 (2), p.81
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365881243
source IOP Publishing Free Content
subjects acceleration of particles
Astrophysics
Charge density
Charge distribution
Computer simulation
Configurations
Current density
Current distribution
Current sheets
Cylinders
Density distribution
Electrodynamics
Electromagnetic fields
Electron-positron plasmas
Electrons
Magnetic fields
Neutron stars
Pair production
Particle density (concentration)
Particle in cell technique
Particle physics
Particle trajectories
plasmas
Positrons
Pulsar magnetospheres
Pulsars
pulsars: general
stars: neutron
Trajectory analysis
title Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-Positron%20Pair%20Flow%20and%20Current%20Composition%20in%20the%20Pulsar%20Magnetosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Brambilla,%20Gabriele&rft.date=2018-05-10&rft.volume=858&rft.issue=2&rft.spage=81&rft.pages=81-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab3e1&rft_dat=%3Cproquest_O3W%3E2365881243%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365881243&rft_id=info:pmid/&rfr_iscdi=true