DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND
ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales (&q...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-01, Vol.835 (1), p.10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | The Astrophysical journal |
container_volume | 835 |
creator | Ballegooijen, A. A. van Asgari-Targhi, M. |
description | ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind. |
doi_str_mv | 10.3847/1538-4357/835/1/10 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365867327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365867327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</originalsourceid><addsrcrecordid>eNp9UE1Pg0AU3BhNrNU_4InEM2U_YFmOG9i2JAgJ4MdtA8sSabRUlh7894I19uZp8ubNzHsZAO4RXBHm-g7yCLNd4vkOI56DHAQvwOKPvAQLCKFrU-K_XoMbY3bziINgAR6jOBdhafE0suL0WeSFsEJehDwSxURY5VZYPAxFInJexllq5WIzQ7b-Wa15UVpFlvDceonT6BZctdW70Xe_uARPa1GGWzvJNnHIE1u5Hh5tBlXNSBuQgGlSY58QH9e6qSoPkrbGE0V1oGvlKtq2DDWNX2OmG8oI1hUMWrIED6fc3oydNKobtXpT_X6v1SgxZjTwKDqrDkP_edRmlLv-OOynxyQm1GPUJ9PtJcAnlRp6YwbdysPQfVTDl0RQzuXKuUc59yinciWa-Mm0Opm6_nBO_cfwDbhacd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365867327</pqid></control><display><type>article</type><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><source>Institute of Physics Open Access Journal Titles</source><creator>Ballegooijen, A. A. van ; Asgari-Targhi, M.</creator><creatorcontrib>Ballegooijen, A. A. van ; Asgari-Targhi, M.</creatorcontrib><description>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/835/1/10</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Acceleration ; Alfven waves ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmosphere ; Atmospheric models ; Cascades ; Computational fluid dynamics ; Computer simulation ; COMPUTERIZED SIMULATION ; Coronal holes ; DENSITY ; DISTANCE ; Energy dissipation ; ENERGY LOSSES ; FLUCTUATIONS ; Fluid flow ; INTERACTIONS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics (MHD) ; NONLINEAR PROBLEMS ; SOLAR ATMOSPHERE ; Solar corona ; SOLAR WIND ; SUN ; Sun: corona ; Sun: magnetic fields ; TURBULENCE ; Variation ; Wave energy ; Wave power ; Wavelengths ; waves</subject><ispartof>The Astrophysical journal, 2017-01, Vol.835 (1), p.10</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</citedby><cites>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/835/1/10/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/835/1/10$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballegooijen, A. A. van</creatorcontrib><creatorcontrib>Asgari-Targhi, M.</creatorcontrib><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</description><subject>Acceleration</subject><subject>Alfven waves</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Cascades</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Coronal holes</subject><subject>DENSITY</subject><subject>DISTANCE</subject><subject>Energy dissipation</subject><subject>ENERGY LOSSES</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>INTERACTIONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics (MHD)</subject><subject>NONLINEAR PROBLEMS</subject><subject>SOLAR ATMOSPHERE</subject><subject>Solar corona</subject><subject>SOLAR WIND</subject><subject>SUN</subject><subject>Sun: corona</subject><subject>Sun: magnetic fields</subject><subject>TURBULENCE</subject><subject>Variation</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wavelengths</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Pg0AU3BhNrNU_4InEM2U_YFmOG9i2JAgJ4MdtA8sSabRUlh7894I19uZp8ubNzHsZAO4RXBHm-g7yCLNd4vkOI56DHAQvwOKPvAQLCKFrU-K_XoMbY3bziINgAR6jOBdhafE0suL0WeSFsEJehDwSxURY5VZYPAxFInJexllq5WIzQ7b-Wa15UVpFlvDceonT6BZctdW70Xe_uARPa1GGWzvJNnHIE1u5Hh5tBlXNSBuQgGlSY58QH9e6qSoPkrbGE0V1oGvlKtq2DDWNX2OmG8oI1hUMWrIED6fc3oydNKobtXpT_X6v1SgxZjTwKDqrDkP_edRmlLv-OOynxyQm1GPUJ9PtJcAnlRp6YwbdysPQfVTDl0RQzuXKuUc59yinciWa-Mm0Opm6_nBO_cfwDbhacd4</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Ballegooijen, A. A. van</creator><creator>Asgari-Targhi, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20170120</creationdate><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><author>Ballegooijen, A. A. van ; Asgari-Targhi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Alfven waves</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Cascades</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Coronal holes</topic><topic>DENSITY</topic><topic>DISTANCE</topic><topic>Energy dissipation</topic><topic>ENERGY LOSSES</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>INTERACTIONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics (MHD)</topic><topic>NONLINEAR PROBLEMS</topic><topic>SOLAR ATMOSPHERE</topic><topic>Solar corona</topic><topic>SOLAR WIND</topic><topic>SUN</topic><topic>Sun: corona</topic><topic>Sun: magnetic fields</topic><topic>TURBULENCE</topic><topic>Variation</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wavelengths</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballegooijen, A. A. van</creatorcontrib><creatorcontrib>Asgari-Targhi, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ballegooijen, A. A. van</au><au>Asgari-Targhi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>835</volume><issue>1</issue><spage>10</spage><pages>10-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/835/1/10</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-01, Vol.835 (1), p.10 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365867327 |
source | Institute of Physics Open Access Journal Titles |
subjects | Acceleration Alfven waves Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Atmosphere Atmospheric models Cascades Computational fluid dynamics Computer simulation COMPUTERIZED SIMULATION Coronal holes DENSITY DISTANCE Energy dissipation ENERGY LOSSES FLUCTUATIONS Fluid flow INTERACTIONS MAGNETIC FIELDS MAGNETOHYDRODYNAMICS magnetohydrodynamics (MHD) NONLINEAR PROBLEMS SOLAR ATMOSPHERE Solar corona SOLAR WIND SUN Sun: corona Sun: magnetic fields TURBULENCE Variation Wave energy Wave power Wavelengths waves |
title | DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRECT%20AND%20INVERSE%20CASCADES%20IN%20THE%20ACCELERATION%20REGION%20OF%20THE%20FAST%20SOLAR%20WIND&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ballegooijen,%20A.%20A.%20van&rft.date=2017-01-20&rft.volume=835&rft.issue=1&rft.spage=10&rft.pages=10-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/835/1/10&rft_dat=%3Cproquest_O3W%3E2365867327%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365867327&rft_id=info:pmid/&rfr_iscdi=true |