DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND

ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales (&q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-01, Vol.835 (1), p.10
Hauptverfasser: Ballegooijen, A. A. van, Asgari-Targhi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10
container_title The Astrophysical journal
container_volume 835
creator Ballegooijen, A. A. van
Asgari-Targhi, M.
description ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.
doi_str_mv 10.3847/1538-4357/835/1/10
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365867327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365867327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</originalsourceid><addsrcrecordid>eNp9UE1Pg0AU3BhNrNU_4InEM2U_YFmOG9i2JAgJ4MdtA8sSabRUlh7894I19uZp8ubNzHsZAO4RXBHm-g7yCLNd4vkOI56DHAQvwOKPvAQLCKFrU-K_XoMbY3bziINgAR6jOBdhafE0suL0WeSFsEJehDwSxURY5VZYPAxFInJexllq5WIzQ7b-Wa15UVpFlvDceonT6BZctdW70Xe_uARPa1GGWzvJNnHIE1u5Hh5tBlXNSBuQgGlSY58QH9e6qSoPkrbGE0V1oGvlKtq2DDWNX2OmG8oI1hUMWrIED6fc3oydNKobtXpT_X6v1SgxZjTwKDqrDkP_edRmlLv-OOynxyQm1GPUJ9PtJcAnlRp6YwbdysPQfVTDl0RQzuXKuUc59yinciWa-Mm0Opm6_nBO_cfwDbhacd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365867327</pqid></control><display><type>article</type><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><source>Institute of Physics Open Access Journal Titles</source><creator>Ballegooijen, A. A. van ; Asgari-Targhi, M.</creator><creatorcontrib>Ballegooijen, A. A. van ; Asgari-Targhi, M.</creatorcontrib><description>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/835/1/10</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Acceleration ; Alfven waves ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmosphere ; Atmospheric models ; Cascades ; Computational fluid dynamics ; Computer simulation ; COMPUTERIZED SIMULATION ; Coronal holes ; DENSITY ; DISTANCE ; Energy dissipation ; ENERGY LOSSES ; FLUCTUATIONS ; Fluid flow ; INTERACTIONS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics (MHD) ; NONLINEAR PROBLEMS ; SOLAR ATMOSPHERE ; Solar corona ; SOLAR WIND ; SUN ; Sun: corona ; Sun: magnetic fields ; TURBULENCE ; Variation ; Wave energy ; Wave power ; Wavelengths ; waves</subject><ispartof>The Astrophysical journal, 2017-01, Vol.835 (1), p.10</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</citedby><cites>FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/835/1/10/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/835/1/10$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballegooijen, A. A. van</creatorcontrib><creatorcontrib>Asgari-Targhi, M.</creatorcontrib><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</description><subject>Acceleration</subject><subject>Alfven waves</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Cascades</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Coronal holes</subject><subject>DENSITY</subject><subject>DISTANCE</subject><subject>Energy dissipation</subject><subject>ENERGY LOSSES</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>INTERACTIONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics (MHD)</subject><subject>NONLINEAR PROBLEMS</subject><subject>SOLAR ATMOSPHERE</subject><subject>Solar corona</subject><subject>SOLAR WIND</subject><subject>SUN</subject><subject>Sun: corona</subject><subject>Sun: magnetic fields</subject><subject>TURBULENCE</subject><subject>Variation</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wavelengths</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Pg0AU3BhNrNU_4InEM2U_YFmOG9i2JAgJ4MdtA8sSabRUlh7894I19uZp8ubNzHsZAO4RXBHm-g7yCLNd4vkOI56DHAQvwOKPvAQLCKFrU-K_XoMbY3bziINgAR6jOBdhafE0suL0WeSFsEJehDwSxURY5VZYPAxFInJexllq5WIzQ7b-Wa15UVpFlvDceonT6BZctdW70Xe_uARPa1GGWzvJNnHIE1u5Hh5tBlXNSBuQgGlSY58QH9e6qSoPkrbGE0V1oGvlKtq2DDWNX2OmG8oI1hUMWrIED6fc3oydNKobtXpT_X6v1SgxZjTwKDqrDkP_edRmlLv-OOynxyQm1GPUJ9PtJcAnlRp6YwbdysPQfVTDl0RQzuXKuUc59yinciWa-Mm0Opm6_nBO_cfwDbhacd4</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Ballegooijen, A. A. van</creator><creator>Asgari-Targhi, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20170120</creationdate><title>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</title><author>Ballegooijen, A. A. van ; Asgari-Targhi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-80cb83f9398e3b273372bedaa503fb23b26e9ebc4c6ff81dd7b28ed6832ea09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Alfven waves</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Cascades</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Coronal holes</topic><topic>DENSITY</topic><topic>DISTANCE</topic><topic>Energy dissipation</topic><topic>ENERGY LOSSES</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>INTERACTIONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics (MHD)</topic><topic>NONLINEAR PROBLEMS</topic><topic>SOLAR ATMOSPHERE</topic><topic>Solar corona</topic><topic>SOLAR WIND</topic><topic>SUN</topic><topic>Sun: corona</topic><topic>Sun: magnetic fields</topic><topic>TURBULENCE</topic><topic>Variation</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wavelengths</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballegooijen, A. A. van</creatorcontrib><creatorcontrib>Asgari-Targhi, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ballegooijen, A. A. van</au><au>Asgari-Targhi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>835</volume><issue>1</issue><spage>10</spage><pages>10-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Alfvén waves are believed to play an important role in the heating and acceleration of the fast solar wind emanating from coronal holes. Nonlinear interactions between the dominant waves and minority waves have the potential to transfer wave energy either to smaller perpendicular scales ("direct cascade") or to larger scales ("inverse cascade"). In this paper we use reduced magnetohydrodynamic (RMHD) simulations to investigate how the cascade rates depend on perpendicular wavenumber and radial distance from the Sun center. For models with a smooth background atmosphere, we find that an inverse cascade ( ) occurs for the dominant waves at radii between 1.4 and and dimensionless wavenumbers in the inertial range ( ), and a direct cascade ( ) occurs elsewhere. For a model with density fluctuations, there are multiple regions with an inverse cascade. In both cases, the cascade rate varies significantly with perpendicular wavenumber, indicating that the cacsade is a highly nonlocal process. As a result of the inverse cascades, the energy dissipation rates are much lower than expected from a phenomenological model and are insufficient to maintain the temperature of the background atmosphere. We conclude that RMHD models are unable to reproduce the observed properties of the fast solar wind.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/835/1/10</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-01, Vol.835 (1), p.10
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365867327
source Institute of Physics Open Access Journal Titles
subjects Acceleration
Alfven waves
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Atmosphere
Atmospheric models
Cascades
Computational fluid dynamics
Computer simulation
COMPUTERIZED SIMULATION
Coronal holes
DENSITY
DISTANCE
Energy dissipation
ENERGY LOSSES
FLUCTUATIONS
Fluid flow
INTERACTIONS
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
magnetohydrodynamics (MHD)
NONLINEAR PROBLEMS
SOLAR ATMOSPHERE
Solar corona
SOLAR WIND
SUN
Sun: corona
Sun: magnetic fields
TURBULENCE
Variation
Wave energy
Wave power
Wavelengths
waves
title DIRECT AND INVERSE CASCADES IN THE ACCELERATION REGION OF THE FAST SOLAR WIND
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRECT%20AND%20INVERSE%20CASCADES%20IN%20THE%20ACCELERATION%20REGION%20OF%20THE%20FAST%20SOLAR%20WIND&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ballegooijen,%20A.%20A.%20van&rft.date=2017-01-20&rft.volume=835&rft.issue=1&rft.spage=10&rft.pages=10-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/835/1/10&rft_dat=%3Cproquest_O3W%3E2365867327%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365867327&rft_id=info:pmid/&rfr_iscdi=true