The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres
Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-02, Vol.872 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Astrophysical journal |
container_volume | 872 |
creator | Gharib-Nezhad, Ehsan Line, Michael R. |
description | Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope. |
doi_str_mv | 10.3847/1538-4357/aafb7b |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365866555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365866555</sourcerecordid><originalsourceid>FETCH-LOGICAL-i287t-dfd12004cb2fc42eec75332295e94134c44a6d925131496be6b136438cbb8c2e3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFbvHhf0aGz2OznWUm2hUJEK3pbNZtKmpLsxm0D99yZU9OJpmOGZmZcHoVsSP7KEqwkRLIk4E2piTJGp7AyNfkfnaBTHMY8kUx-X6CqE_dDSNB2ht80O8NIVVQfOAvYFXtA1fm0ghK4B_NR4k4Mr3RaXDi_K7S46QGuqqrRl-4XnR19XxkGLp-3Bh3oH_eI1uihMFeDmp47R-_N8M1tEq_XLcjZdRSVNVBvlRU5oH8NmtLCcAlglGKM0FZBywrjl3Mg8pYIwwlOZgcwIk5wlNssSS4GN0d3pbt34zw5Cq_e-a1z_UlMmRSKlEKKn7k9U6es_wNR7nSiqiaZK13nRYw__YCTWg1w9mNSDSX2Sy74B6Rlsfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365866555</pqid></control><display><type>article</type><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><source>IOP Publishing Free Content</source><creator>Gharib-Nezhad, Ehsan ; Line, Michael R.</creator><creatorcontrib>Gharib-Nezhad, Ehsan ; Line, Michael R.</creatorcontrib><description>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aafb7b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Absorption cross sections ; Astrophysics ; Atmosphere ; Atmospheric correction ; Atmospheric models ; Atmospheric pressure ; Carbon dioxide ; Emission analysis ; Emission spectra ; Emissions ; Energy balance ; Extrasolar planets ; James Webb Space Telescope ; Metal content ; Metallicity ; Molecular absorption ; molecular data ; Planet formation ; Planetary atmospheres ; planets and satellites: atmospheres ; planets and satellites: composition ; Pressure broadening ; Space telescopes ; Telescopes ; Temperature structure</subject><ispartof>The Astrophysical journal, 2019-02, Vol.872 (1)</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4088-7262 ; 0000-0002-2338-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aafb7b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,38881,53858</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aafb7b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Gharib-Nezhad, Ehsan</creatorcontrib><creatorcontrib>Line, Michael R.</creatorcontrib><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</description><subject>Absorption cross sections</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric correction</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Carbon dioxide</subject><subject>Emission analysis</subject><subject>Emission spectra</subject><subject>Emissions</subject><subject>Energy balance</subject><subject>Extrasolar planets</subject><subject>James Webb Space Telescope</subject><subject>Metal content</subject><subject>Metallicity</subject><subject>Molecular absorption</subject><subject>molecular data</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: composition</subject><subject>Pressure broadening</subject><subject>Space telescopes</subject><subject>Telescopes</subject><subject>Temperature structure</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFbvHhf0aGz2OznWUm2hUJEK3pbNZtKmpLsxm0D99yZU9OJpmOGZmZcHoVsSP7KEqwkRLIk4E2piTJGp7AyNfkfnaBTHMY8kUx-X6CqE_dDSNB2ht80O8NIVVQfOAvYFXtA1fm0ghK4B_NR4k4Mr3RaXDi_K7S46QGuqqrRl-4XnR19XxkGLp-3Bh3oH_eI1uihMFeDmp47R-_N8M1tEq_XLcjZdRSVNVBvlRU5oH8NmtLCcAlglGKM0FZBywrjl3Mg8pYIwwlOZgcwIk5wlNssSS4GN0d3pbt34zw5Cq_e-a1z_UlMmRSKlEKKn7k9U6es_wNR7nSiqiaZK13nRYw__YCTWg1w9mNSDSX2Sy74B6Rlsfg</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>Gharib-Nezhad, Ehsan</creator><creator>Line, Michael R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4088-7262</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid></search><sort><creationdate>20190210</creationdate><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><author>Gharib-Nezhad, Ehsan ; Line, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i287t-dfd12004cb2fc42eec75332295e94134c44a6d925131496be6b136438cbb8c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption cross sections</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric correction</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Carbon dioxide</topic><topic>Emission analysis</topic><topic>Emission spectra</topic><topic>Emissions</topic><topic>Energy balance</topic><topic>Extrasolar planets</topic><topic>James Webb Space Telescope</topic><topic>Metal content</topic><topic>Metallicity</topic><topic>Molecular absorption</topic><topic>molecular data</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: composition</topic><topic>Pressure broadening</topic><topic>Space telescopes</topic><topic>Telescopes</topic><topic>Temperature structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharib-Nezhad, Ehsan</creatorcontrib><creatorcontrib>Line, Michael R.</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gharib-Nezhad, Ehsan</au><au>Line, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>872</volume><issue>1</issue><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aafb7b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4088-7262</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-02, Vol.872 (1) |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365866555 |
source | IOP Publishing Free Content |
subjects | Absorption cross sections Astrophysics Atmosphere Atmospheric correction Atmospheric models Atmospheric pressure Carbon dioxide Emission analysis Emission spectra Emissions Energy balance Extrasolar planets James Webb Space Telescope Metal content Metallicity Molecular absorption molecular data Planet formation Planetary atmospheres planets and satellites: atmospheres planets and satellites: composition Pressure broadening Space telescopes Telescopes Temperature structure |
title | The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20H2O%20Pressure%20Broadening%20in%20High-metallicity%20Exoplanet%20Atmospheres&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gharib-Nezhad,%20Ehsan&rft.date=2019-02-10&rft.volume=872&rft.issue=1&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aafb7b&rft_dat=%3Cproquest_O3W%3E2365866555%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365866555&rft_id=info:pmid/&rfr_iscdi=true |