The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres

Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-02, Vol.872 (1)
Hauptverfasser: Gharib-Nezhad, Ehsan, Line, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Astrophysical journal
container_volume 872
creator Gharib-Nezhad, Ehsan
Line, Michael R.
description Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.
doi_str_mv 10.3847/1538-4357/aafb7b
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365866555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365866555</sourcerecordid><originalsourceid>FETCH-LOGICAL-i287t-dfd12004cb2fc42eec75332295e94134c44a6d925131496be6b136438cbb8c2e3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFbvHhf0aGz2OznWUm2hUJEK3pbNZtKmpLsxm0D99yZU9OJpmOGZmZcHoVsSP7KEqwkRLIk4E2piTJGp7AyNfkfnaBTHMY8kUx-X6CqE_dDSNB2ht80O8NIVVQfOAvYFXtA1fm0ghK4B_NR4k4Mr3RaXDi_K7S46QGuqqrRl-4XnR19XxkGLp-3Bh3oH_eI1uihMFeDmp47R-_N8M1tEq_XLcjZdRSVNVBvlRU5oH8NmtLCcAlglGKM0FZBywrjl3Mg8pYIwwlOZgcwIk5wlNssSS4GN0d3pbt34zw5Cq_e-a1z_UlMmRSKlEKKn7k9U6es_wNR7nSiqiaZK13nRYw__YCTWg1w9mNSDSX2Sy74B6Rlsfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365866555</pqid></control><display><type>article</type><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><source>IOP Publishing Free Content</source><creator>Gharib-Nezhad, Ehsan ; Line, Michael R.</creator><creatorcontrib>Gharib-Nezhad, Ehsan ; Line, Michael R.</creatorcontrib><description>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aafb7b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Absorption cross sections ; Astrophysics ; Atmosphere ; Atmospheric correction ; Atmospheric models ; Atmospheric pressure ; Carbon dioxide ; Emission analysis ; Emission spectra ; Emissions ; Energy balance ; Extrasolar planets ; James Webb Space Telescope ; Metal content ; Metallicity ; Molecular absorption ; molecular data ; Planet formation ; Planetary atmospheres ; planets and satellites: atmospheres ; planets and satellites: composition ; Pressure broadening ; Space telescopes ; Telescopes ; Temperature structure</subject><ispartof>The Astrophysical journal, 2019-02, Vol.872 (1)</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4088-7262 ; 0000-0002-2338-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aafb7b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,38881,53858</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aafb7b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Gharib-Nezhad, Ehsan</creatorcontrib><creatorcontrib>Line, Michael R.</creatorcontrib><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</description><subject>Absorption cross sections</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric correction</subject><subject>Atmospheric models</subject><subject>Atmospheric pressure</subject><subject>Carbon dioxide</subject><subject>Emission analysis</subject><subject>Emission spectra</subject><subject>Emissions</subject><subject>Energy balance</subject><subject>Extrasolar planets</subject><subject>James Webb Space Telescope</subject><subject>Metal content</subject><subject>Metallicity</subject><subject>Molecular absorption</subject><subject>molecular data</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: composition</subject><subject>Pressure broadening</subject><subject>Space telescopes</subject><subject>Telescopes</subject><subject>Temperature structure</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFbvHhf0aGz2OznWUm2hUJEK3pbNZtKmpLsxm0D99yZU9OJpmOGZmZcHoVsSP7KEqwkRLIk4E2piTJGp7AyNfkfnaBTHMY8kUx-X6CqE_dDSNB2ht80O8NIVVQfOAvYFXtA1fm0ghK4B_NR4k4Mr3RaXDi_K7S46QGuqqrRl-4XnR19XxkGLp-3Bh3oH_eI1uihMFeDmp47R-_N8M1tEq_XLcjZdRSVNVBvlRU5oH8NmtLCcAlglGKM0FZBywrjl3Mg8pYIwwlOZgcwIk5wlNssSS4GN0d3pbt34zw5Cq_e-a1z_UlMmRSKlEKKn7k9U6es_wNR7nSiqiaZK13nRYw__YCTWg1w9mNSDSX2Sy74B6Rlsfg</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>Gharib-Nezhad, Ehsan</creator><creator>Line, Michael R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4088-7262</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid></search><sort><creationdate>20190210</creationdate><title>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</title><author>Gharib-Nezhad, Ehsan ; Line, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i287t-dfd12004cb2fc42eec75332295e94134c44a6d925131496be6b136438cbb8c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption cross sections</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric correction</topic><topic>Atmospheric models</topic><topic>Atmospheric pressure</topic><topic>Carbon dioxide</topic><topic>Emission analysis</topic><topic>Emission spectra</topic><topic>Emissions</topic><topic>Energy balance</topic><topic>Extrasolar planets</topic><topic>James Webb Space Telescope</topic><topic>Metal content</topic><topic>Metallicity</topic><topic>Molecular absorption</topic><topic>molecular data</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: composition</topic><topic>Pressure broadening</topic><topic>Space telescopes</topic><topic>Telescopes</topic><topic>Temperature structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharib-Nezhad, Ehsan</creatorcontrib><creatorcontrib>Line, Michael R.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gharib-Nezhad, Ehsan</au><au>Line, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>872</volume><issue>1</issue><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Planet formation models suggest broad compositional diversity in the sub-Neptune/super-Earth regime, with a high likelihood for large atmospheric metal content (≥100× Solar). With this comes the prevalence of numerous plausible bulk atmospheric constituents including N2, CO2, H2O, CO, and CH4. Given this compositional diversity there is a critical need to investigate the influence of the background gas on the broadening of the molecular absorption cross sections and the subsequent influence on observed spectra. This broadening can become significant and the common H2/He or "air" broadening assumptions are no longer appropriate. In this work, we investigate the role of water self-broadening on the emission and transmission spectra as well as on the vertical energy balance in representative sub-Neptune/super-Earth atmospheres. We find that the choice of the broadener species can result in a 10 s of parts-per-million difference in the observed transmission and emission spectra and can significantly alter the one-dimensional vertical temperature structure of the atmosphere. Choosing the correct background broadener is critical to the proper modeling and interpretation of transit spectra observations in high-metallicity regimes, especially in the era of higher-precision telescopes such as the James Webb Space Telescope.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aafb7b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4088-7262</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-02, Vol.872 (1)
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365866555
source IOP Publishing Free Content
subjects Absorption cross sections
Astrophysics
Atmosphere
Atmospheric correction
Atmospheric models
Atmospheric pressure
Carbon dioxide
Emission analysis
Emission spectra
Emissions
Energy balance
Extrasolar planets
James Webb Space Telescope
Metal content
Metallicity
Molecular absorption
molecular data
Planet formation
Planetary atmospheres
planets and satellites: atmospheres
planets and satellites: composition
Pressure broadening
Space telescopes
Telescopes
Temperature structure
title The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20H2O%20Pressure%20Broadening%20in%20High-metallicity%20Exoplanet%20Atmospheres&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gharib-Nezhad,%20Ehsan&rft.date=2019-02-10&rft.volume=872&rft.issue=1&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aafb7b&rft_dat=%3Cproquest_O3W%3E2365866555%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365866555&rft_id=info:pmid/&rfr_iscdi=true