THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE
ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2016-12, Vol.832 (2), p.127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 127 |
container_title | The Astrophysical journal |
container_volume | 832 |
creator | Harris, Alan W. Drube, Line |
description | ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense. |
doi_str_mv | 10.3847/0004-637X/832/2/127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365834169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365834169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gZuAuIyZ92MZYvqASiRNQFdDMplgijYxky789yZU7EZcXQ5853D5ALhF8IFIKgIIIfU5ES-BJDjAAcLiDMwQI9KnhIlzMPslLsGVc7spYqVmAGarOH0KN16WPCXLNHxevXrJwgu3WZwm60dvm6eLMIq9bZbmUZan8TW4qIt3Z29-7hzkiziLVv4mWa6jcOMXDKrBrxm1DCsjCa9KawizmKKCIirqWpWKGlXJgpXGCoUIZqUsYWU4IlwKgVFtyRzcHXdbNzTamWaw5s20-701g8aYcwQRPVFd334erBv0rj30-_ExjQlnklDE1UiRI2X61rne1rrrm4-i_9II6kmgnnzoSY8eBWqsR4Fj6_7YatruNFt0uxOju6oeueAP7r_lb5t5d9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365834169</pqid></control><display><type>article</type><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><source>IOP Publishing Free Content</source><creator>Harris, Alan W. ; Drube, Line</creator><creatorcontrib>Harris, Alan W. ; Drube, Line</creatorcontrib><description>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/0004-637X/832/2/127</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTEROIDS ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; DISTURBANCES ; Ejecta ; Impactors ; Inertia ; infrared: planetary systems ; LAYERS ; Material properties ; minor planets, asteroids: general ; MOMENT OF INERTIA ; MOMENTUM TRANSFER ; Near-Earth Objects ; Orbit perturbation ; ORBITS ; OVERBURDEN ; Planetary defense ; PLANETS ; POROUS MATERIALS ; Regolith ; ROCKS ; Specific heat ; SPIN ; Surface structure ; SURFACES ; THERMAL CONDUCTIVITY ; Thermal inertia ; Thermophysical models ; TOMOGRAPHY</subject><ispartof>The Astrophysical journal, 2016-12, Vol.832 (2), p.127</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</citedby><cites>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</cites><orcidid>0000-0001-8548-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/2/127/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/2/127$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22661014$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Drube, Line</creatorcontrib><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</description><subject>ASTEROIDS</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>DISTURBANCES</subject><subject>Ejecta</subject><subject>Impactors</subject><subject>Inertia</subject><subject>infrared: planetary systems</subject><subject>LAYERS</subject><subject>Material properties</subject><subject>minor planets, asteroids: general</subject><subject>MOMENT OF INERTIA</subject><subject>MOMENTUM TRANSFER</subject><subject>Near-Earth Objects</subject><subject>Orbit perturbation</subject><subject>ORBITS</subject><subject>OVERBURDEN</subject><subject>Planetary defense</subject><subject>PLANETS</subject><subject>POROUS MATERIALS</subject><subject>Regolith</subject><subject>ROCKS</subject><subject>Specific heat</subject><subject>SPIN</subject><subject>Surface structure</subject><subject>SURFACES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermal inertia</subject><subject>Thermophysical models</subject><subject>TOMOGRAPHY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gZuAuIyZ92MZYvqASiRNQFdDMplgijYxky789yZU7EZcXQ5853D5ALhF8IFIKgIIIfU5ES-BJDjAAcLiDMwQI9KnhIlzMPslLsGVc7spYqVmAGarOH0KN16WPCXLNHxevXrJwgu3WZwm60dvm6eLMIq9bZbmUZan8TW4qIt3Z29-7hzkiziLVv4mWa6jcOMXDKrBrxm1DCsjCa9KawizmKKCIirqWpWKGlXJgpXGCoUIZqUsYWU4IlwKgVFtyRzcHXdbNzTamWaw5s20-701g8aYcwQRPVFd334erBv0rj30-_ExjQlnklDE1UiRI2X61rne1rrrm4-i_9II6kmgnnzoSY8eBWqsR4Fj6_7YatruNFt0uxOju6oeueAP7r_lb5t5d9Q</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Harris, Alan W.</creator><creator>Drube, Line</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8548-8268</orcidid></search><sort><creationdate>20161201</creationdate><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><author>Harris, Alan W. ; Drube, Line</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ASTEROIDS</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>DISTURBANCES</topic><topic>Ejecta</topic><topic>Impactors</topic><topic>Inertia</topic><topic>infrared: planetary systems</topic><topic>LAYERS</topic><topic>Material properties</topic><topic>minor planets, asteroids: general</topic><topic>MOMENT OF INERTIA</topic><topic>MOMENTUM TRANSFER</topic><topic>Near-Earth Objects</topic><topic>Orbit perturbation</topic><topic>ORBITS</topic><topic>OVERBURDEN</topic><topic>Planetary defense</topic><topic>PLANETS</topic><topic>POROUS MATERIALS</topic><topic>Regolith</topic><topic>ROCKS</topic><topic>Specific heat</topic><topic>SPIN</topic><topic>Surface structure</topic><topic>SURFACES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermal inertia</topic><topic>Thermophysical models</topic><topic>TOMOGRAPHY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Drube, Line</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harris, Alan W.</au><au>Drube, Line</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>832</volume><issue>2</issue><spage>127</spage><pages>127-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/0004-637X/832/2/127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8548-8268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2016-12, Vol.832 (2), p.127 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365834169 |
source | IOP Publishing Free Content |
subjects | ASTEROIDS Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY DISTURBANCES Ejecta Impactors Inertia infrared: planetary systems LAYERS Material properties minor planets, asteroids: general MOMENT OF INERTIA MOMENTUM TRANSFER Near-Earth Objects Orbit perturbation ORBITS OVERBURDEN Planetary defense PLANETS POROUS MATERIALS Regolith ROCKS Specific heat SPIN Surface structure SURFACES THERMAL CONDUCTIVITY Thermal inertia Thermophysical models TOMOGRAPHY |
title | THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THERMAL%20TOMOGRAPHY%20OF%20ASTEROID%20SURFACE%20STRUCTURE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Harris,%20Alan%20W.&rft.date=2016-12-01&rft.volume=832&rft.issue=2&rft.spage=127&rft.pages=127-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/0004-637X/832/2/127&rft_dat=%3Cproquest_O3W%3E2365834169%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365834169&rft_id=info:pmid/&rfr_iscdi=true |