THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2016-12, Vol.832 (2), p.127
Hauptverfasser: Harris, Alan W., Drube, Line
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 127
container_title The Astrophysical journal
container_volume 832
creator Harris, Alan W.
Drube, Line
description ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.
doi_str_mv 10.3847/0004-637X/832/2/127
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365834169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365834169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gZuAuIyZ92MZYvqASiRNQFdDMplgijYxky789yZU7EZcXQ5853D5ALhF8IFIKgIIIfU5ES-BJDjAAcLiDMwQI9KnhIlzMPslLsGVc7spYqVmAGarOH0KN16WPCXLNHxevXrJwgu3WZwm60dvm6eLMIq9bZbmUZan8TW4qIt3Z29-7hzkiziLVv4mWa6jcOMXDKrBrxm1DCsjCa9KawizmKKCIirqWpWKGlXJgpXGCoUIZqUsYWU4IlwKgVFtyRzcHXdbNzTamWaw5s20-701g8aYcwQRPVFd334erBv0rj30-_ExjQlnklDE1UiRI2X61rne1rrrm4-i_9II6kmgnnzoSY8eBWqsR4Fj6_7YatruNFt0uxOju6oeueAP7r_lb5t5d9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365834169</pqid></control><display><type>article</type><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><source>IOP Publishing Free Content</source><creator>Harris, Alan W. ; Drube, Line</creator><creatorcontrib>Harris, Alan W. ; Drube, Line</creatorcontrib><description>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/0004-637X/832/2/127</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTEROIDS ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; DISTURBANCES ; Ejecta ; Impactors ; Inertia ; infrared: planetary systems ; LAYERS ; Material properties ; minor planets, asteroids: general ; MOMENT OF INERTIA ; MOMENTUM TRANSFER ; Near-Earth Objects ; Orbit perturbation ; ORBITS ; OVERBURDEN ; Planetary defense ; PLANETS ; POROUS MATERIALS ; Regolith ; ROCKS ; Specific heat ; SPIN ; Surface structure ; SURFACES ; THERMAL CONDUCTIVITY ; Thermal inertia ; Thermophysical models ; TOMOGRAPHY</subject><ispartof>The Astrophysical journal, 2016-12, Vol.832 (2), p.127</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</citedby><cites>FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</cites><orcidid>0000-0001-8548-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/2/127/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/2/127$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22661014$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Drube, Line</creatorcontrib><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</description><subject>ASTEROIDS</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>DISTURBANCES</subject><subject>Ejecta</subject><subject>Impactors</subject><subject>Inertia</subject><subject>infrared: planetary systems</subject><subject>LAYERS</subject><subject>Material properties</subject><subject>minor planets, asteroids: general</subject><subject>MOMENT OF INERTIA</subject><subject>MOMENTUM TRANSFER</subject><subject>Near-Earth Objects</subject><subject>Orbit perturbation</subject><subject>ORBITS</subject><subject>OVERBURDEN</subject><subject>Planetary defense</subject><subject>PLANETS</subject><subject>POROUS MATERIALS</subject><subject>Regolith</subject><subject>ROCKS</subject><subject>Specific heat</subject><subject>SPIN</subject><subject>Surface structure</subject><subject>SURFACES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermal inertia</subject><subject>Thermophysical models</subject><subject>TOMOGRAPHY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gZuAuIyZ92MZYvqASiRNQFdDMplgijYxky789yZU7EZcXQ5853D5ALhF8IFIKgIIIfU5ES-BJDjAAcLiDMwQI9KnhIlzMPslLsGVc7spYqVmAGarOH0KN16WPCXLNHxevXrJwgu3WZwm60dvm6eLMIq9bZbmUZan8TW4qIt3Z29-7hzkiziLVv4mWa6jcOMXDKrBrxm1DCsjCa9KawizmKKCIirqWpWKGlXJgpXGCoUIZqUsYWU4IlwKgVFtyRzcHXdbNzTamWaw5s20-701g8aYcwQRPVFd334erBv0rj30-_ExjQlnklDE1UiRI2X61rne1rrrm4-i_9II6kmgnnzoSY8eBWqsR4Fj6_7YatruNFt0uxOju6oeueAP7r_lb5t5d9Q</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Harris, Alan W.</creator><creator>Drube, Line</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8548-8268</orcidid></search><sort><creationdate>20161201</creationdate><title>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</title><author>Harris, Alan W. ; Drube, Line</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-f54e529c836dbec35e241a4147ff9b94c9d8a5bce791325b8b0dc613687721fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ASTEROIDS</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>DISTURBANCES</topic><topic>Ejecta</topic><topic>Impactors</topic><topic>Inertia</topic><topic>infrared: planetary systems</topic><topic>LAYERS</topic><topic>Material properties</topic><topic>minor planets, asteroids: general</topic><topic>MOMENT OF INERTIA</topic><topic>MOMENTUM TRANSFER</topic><topic>Near-Earth Objects</topic><topic>Orbit perturbation</topic><topic>ORBITS</topic><topic>OVERBURDEN</topic><topic>Planetary defense</topic><topic>PLANETS</topic><topic>POROUS MATERIALS</topic><topic>Regolith</topic><topic>ROCKS</topic><topic>Specific heat</topic><topic>SPIN</topic><topic>Surface structure</topic><topic>SURFACES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermal inertia</topic><topic>Thermophysical models</topic><topic>TOMOGRAPHY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Drube, Line</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harris, Alan W.</au><au>Drube, Line</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>832</volume><issue>2</issue><spage>127</spage><pages>127-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/0004-637X/832/2/127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8548-8268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2016-12, Vol.832 (2), p.127
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365834169
source IOP Publishing Free Content
subjects ASTEROIDS
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
DISTURBANCES
Ejecta
Impactors
Inertia
infrared: planetary systems
LAYERS
Material properties
minor planets, asteroids: general
MOMENT OF INERTIA
MOMENTUM TRANSFER
Near-Earth Objects
Orbit perturbation
ORBITS
OVERBURDEN
Planetary defense
PLANETS
POROUS MATERIALS
Regolith
ROCKS
Specific heat
SPIN
Surface structure
SURFACES
THERMAL CONDUCTIVITY
Thermal inertia
Thermophysical models
TOMOGRAPHY
title THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THERMAL%20TOMOGRAPHY%20OF%20ASTEROID%20SURFACE%20STRUCTURE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Harris,%20Alan%20W.&rft.date=2016-12-01&rft.volume=832&rft.issue=2&rft.spage=127&rft.pages=127-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/0004-637X/832/2/127&rft_dat=%3Cproquest_O3W%3E2365834169%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365834169&rft_id=info:pmid/&rfr_iscdi=true