Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae

Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-08, Vol.863 (2), p.176
Hauptverfasser: Mori, Kanji, Famiano, Michael A., Kajino, Toshitaka, Suzuki, Toshio, Garnavich, Peter M., Mathews, Grant J., Diehl, Roland, Leung, Shing-Chi, Nomoto, Ken'ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 176
container_title The Astrophysical journal
container_volume 863
creator Mori, Kanji
Famiano, Michael A.
Kajino, Toshitaka
Suzuki, Toshio
Garnavich, Peter M.
Mathews, Grant J.
Diehl, Roland
Leung, Shing-Chi
Nomoto, Ken'ichi
description Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realistic recent treatment of electron captures (ECs). The nucleosynthesis is sensitive to the highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss new results of post-processing nucleosynthesis for two spherical models (deflagration and/or delayed-detonation models) based upon new EC rates. We also consider cylindrical and 3D explosion models (including deflagration, delayed-detonation, or a violent merger model). Although there are uncertainties in the observational constraints, we identify some trends in the observations and the models. We make a new comparison of the models with elemental and isotopic ratios from five observed supernovae and three supernova remnants. We find that the models and data tend to fall into two groups. In one group, low-density cores such as in a 3D merger model are slightly more consistent with the nucleosynthesis data, while the other group is slightly better identified with higher-density cores such as in single-degenerate 1D-3D deflagration models. Hence, we postulate that both types of environments appear to contribute nearly equally to observed SN Ia. We also note that observational constraints on the yields of 54Cr and 54Fe, if available, might be used as a means to clarify the degree of geometrical symmetry of SN Ia explosions.
doi_str_mv 10.3847/1538-4357/aad233
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365833980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365833980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e69e3f3ac46c48d7f0e9221eddf52ea04e45d1f7b605b4472a100cedad5a7b6d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOKd3j0XxZl3SpE17lDF_wKYHJ3gLWfIt69iSmqTi_ntTKnrR05f3-LzHl4fQOcE3tGR8QnJapozmfCKlzig9QKMf6xCNMMYsLSh_O0Yn3m96mVXVCC2eOrUF6_cmrME3Ppla44OTjQk-sSaJbjL7bLfWN1EtQK2lafwuqa1LlvsWkkeZvHQtOGM_JJyio1puPZx93zF6vZstpw_p_Pn-cXo7TxXjNKRQVEBrKhUrFCs1rzFUWUZA6zrPQGIGLNek5qsC5yvGeCYJxgq01LmMpqZjdDH0Wh8a4VUT4mPKGgMqCJITggmP0OUAtc6-d-CD2NjOmfiXyGiRl5RWJY4UHijlrPcOatG6ZifdXhAs-mVFP6PoZxTDsjFyNUQa2_52ynYjyoKKTBBeiFbXkbv-g_u39gtKO4cb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365833980</pqid></control><display><type>article</type><title>Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae</title><source>Institute of Physics Open Access Journal Titles</source><creator>Mori, Kanji ; Famiano, Michael A. ; Kajino, Toshitaka ; Suzuki, Toshio ; Garnavich, Peter M. ; Mathews, Grant J. ; Diehl, Roland ; Leung, Shing-Chi ; Nomoto, Ken'ichi</creator><creatorcontrib>Mori, Kanji ; Famiano, Michael A. ; Kajino, Toshitaka ; Suzuki, Toshio ; Garnavich, Peter M. ; Mathews, Grant J. ; Diehl, Roland ; Leung, Shing-Chi ; Nomoto, Ken'ichi ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realistic recent treatment of electron captures (ECs). The nucleosynthesis is sensitive to the highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss new results of post-processing nucleosynthesis for two spherical models (deflagration and/or delayed-detonation models) based upon new EC rates. We also consider cylindrical and 3D explosion models (including deflagration, delayed-detonation, or a violent merger model). Although there are uncertainties in the observational constraints, we identify some trends in the observations and the models. We make a new comparison of the models with elemental and isotopic ratios from five observed supernovae and three supernova remnants. We find that the models and data tend to fall into two groups. In one group, low-density cores such as in a 3D merger model are slightly more consistent with the nucleosynthesis data, while the other group is slightly better identified with higher-density cores such as in single-degenerate 1D-3D deflagration models. Hence, we postulate that both types of environments appear to contribute nearly equally to observed SN Ia. We also note that observational constraints on the yields of 54Cr and 54Fe, if available, might be used as a means to clarify the degree of geometrical symmetry of SN Ia explosions.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aad233</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Cores ; Deflagration ; Density ; Detonation ; Explosions ; Iron isotopes ; Isotopes ; Nuclear fusion ; nuclear reactions, nucleosynthesis, abundances ; nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs ; Post-production processing ; Supernova ; Supernova remnants ; Supernovae ; supernovae: general ; Thermonuclear explosions ; Three dimensional models ; white dwarfs</subject><ispartof>The Astrophysical journal, 2018-08, Vol.863 (2), p.176</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e69e3f3ac46c48d7f0e9221eddf52ea04e45d1f7b605b4472a100cedad5a7b6d3</citedby><cites>FETCH-LOGICAL-c473t-e69e3f3ac46c48d7f0e9221eddf52ea04e45d1f7b605b4472a100cedad5a7b6d3</cites><orcidid>0000-0003-4069-2817 ; 0000-0002-4972-3803 ; 0000-0002-5500-539X ; 0000-0002-2663-0540 ; 0000-0001-9553-0685 ; 0000-0003-2305-9091 ; 0000000323059091 ; 0000000226630540 ; 0000000249723803 ; 0000000195530685 ; 0000000340692817 ; 000000025500539X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad233/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aad233$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mori, Kanji</creatorcontrib><creatorcontrib>Famiano, Michael A.</creatorcontrib><creatorcontrib>Kajino, Toshitaka</creatorcontrib><creatorcontrib>Suzuki, Toshio</creatorcontrib><creatorcontrib>Garnavich, Peter M.</creatorcontrib><creatorcontrib>Mathews, Grant J.</creatorcontrib><creatorcontrib>Diehl, Roland</creatorcontrib><creatorcontrib>Leung, Shing-Chi</creatorcontrib><creatorcontrib>Nomoto, Ken'ichi</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realistic recent treatment of electron captures (ECs). The nucleosynthesis is sensitive to the highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss new results of post-processing nucleosynthesis for two spherical models (deflagration and/or delayed-detonation models) based upon new EC rates. We also consider cylindrical and 3D explosion models (including deflagration, delayed-detonation, or a violent merger model). Although there are uncertainties in the observational constraints, we identify some trends in the observations and the models. We make a new comparison of the models with elemental and isotopic ratios from five observed supernovae and three supernova remnants. We find that the models and data tend to fall into two groups. In one group, low-density cores such as in a 3D merger model are slightly more consistent with the nucleosynthesis data, while the other group is slightly better identified with higher-density cores such as in single-degenerate 1D-3D deflagration models. Hence, we postulate that both types of environments appear to contribute nearly equally to observed SN Ia. We also note that observational constraints on the yields of 54Cr and 54Fe, if available, might be used as a means to clarify the degree of geometrical symmetry of SN Ia explosions.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Cores</subject><subject>Deflagration</subject><subject>Density</subject><subject>Detonation</subject><subject>Explosions</subject><subject>Iron isotopes</subject><subject>Isotopes</subject><subject>Nuclear fusion</subject><subject>nuclear reactions, nucleosynthesis, abundances</subject><subject>nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs</subject><subject>Post-production processing</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>Supernovae</subject><subject>supernovae: general</subject><subject>Thermonuclear explosions</subject><subject>Three dimensional models</subject><subject>white dwarfs</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAcxYMoOKd3j0XxZl3SpE17lDF_wKYHJ3gLWfIt69iSmqTi_ntTKnrR05f3-LzHl4fQOcE3tGR8QnJapozmfCKlzig9QKMf6xCNMMYsLSh_O0Yn3m96mVXVCC2eOrUF6_cmrME3Ppla44OTjQk-sSaJbjL7bLfWN1EtQK2lafwuqa1LlvsWkkeZvHQtOGM_JJyio1puPZx93zF6vZstpw_p_Pn-cXo7TxXjNKRQVEBrKhUrFCs1rzFUWUZA6zrPQGIGLNek5qsC5yvGeCYJxgq01LmMpqZjdDH0Wh8a4VUT4mPKGgMqCJITggmP0OUAtc6-d-CD2NjOmfiXyGiRl5RWJY4UHijlrPcOatG6ZifdXhAs-mVFP6PoZxTDsjFyNUQa2_52ynYjyoKKTBBeiFbXkbv-g_u39gtKO4cb</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Mori, Kanji</creator><creator>Famiano, Michael A.</creator><creator>Kajino, Toshitaka</creator><creator>Suzuki, Toshio</creator><creator>Garnavich, Peter M.</creator><creator>Mathews, Grant J.</creator><creator>Diehl, Roland</creator><creator>Leung, Shing-Chi</creator><creator>Nomoto, Ken'ichi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4069-2817</orcidid><orcidid>https://orcid.org/0000-0002-4972-3803</orcidid><orcidid>https://orcid.org/0000-0002-5500-539X</orcidid><orcidid>https://orcid.org/0000-0002-2663-0540</orcidid><orcidid>https://orcid.org/0000-0001-9553-0685</orcidid><orcidid>https://orcid.org/0000-0003-2305-9091</orcidid><orcidid>https://orcid.org/0000000323059091</orcidid><orcidid>https://orcid.org/0000000226630540</orcidid><orcidid>https://orcid.org/0000000249723803</orcidid><orcidid>https://orcid.org/0000000195530685</orcidid><orcidid>https://orcid.org/0000000340692817</orcidid><orcidid>https://orcid.org/000000025500539X</orcidid></search><sort><creationdate>20180820</creationdate><title>Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae</title><author>Mori, Kanji ; Famiano, Michael A. ; Kajino, Toshitaka ; Suzuki, Toshio ; Garnavich, Peter M. ; Mathews, Grant J. ; Diehl, Roland ; Leung, Shing-Chi ; Nomoto, Ken'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e69e3f3ac46c48d7f0e9221eddf52ea04e45d1f7b605b4472a100cedad5a7b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Cores</topic><topic>Deflagration</topic><topic>Density</topic><topic>Detonation</topic><topic>Explosions</topic><topic>Iron isotopes</topic><topic>Isotopes</topic><topic>Nuclear fusion</topic><topic>nuclear reactions, nucleosynthesis, abundances</topic><topic>nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs</topic><topic>Post-production processing</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>Supernovae</topic><topic>supernovae: general</topic><topic>Thermonuclear explosions</topic><topic>Three dimensional models</topic><topic>white dwarfs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Kanji</creatorcontrib><creatorcontrib>Famiano, Michael A.</creatorcontrib><creatorcontrib>Kajino, Toshitaka</creatorcontrib><creatorcontrib>Suzuki, Toshio</creatorcontrib><creatorcontrib>Garnavich, Peter M.</creatorcontrib><creatorcontrib>Mathews, Grant J.</creatorcontrib><creatorcontrib>Diehl, Roland</creatorcontrib><creatorcontrib>Leung, Shing-Chi</creatorcontrib><creatorcontrib>Nomoto, Ken'ichi</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mori, Kanji</au><au>Famiano, Michael A.</au><au>Kajino, Toshitaka</au><au>Suzuki, Toshio</au><au>Garnavich, Peter M.</au><au>Mathews, Grant J.</au><au>Diehl, Roland</au><au>Leung, Shing-Chi</au><au>Nomoto, Ken'ichi</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-08-20</date><risdate>2018</risdate><volume>863</volume><issue>2</issue><spage>176</spage><pages>176-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Observations of type Ia supernovae (SNe Ia) include information about the characteristic nucleosynthesis associated with these thermonuclear explosions. We consider observational constraints from iron-group elemental and isotopic ratios, to compare with various models obtained with the most realistic recent treatment of electron captures (ECs). The nucleosynthesis is sensitive to the highest white-dwarf central densities. Hence, nucleosynthesis yields can distinguish high-density Chandrasekhar-mass models from lower-density burning models such as white-dwarf mergers. We discuss new results of post-processing nucleosynthesis for two spherical models (deflagration and/or delayed-detonation models) based upon new EC rates. We also consider cylindrical and 3D explosion models (including deflagration, delayed-detonation, or a violent merger model). Although there are uncertainties in the observational constraints, we identify some trends in the observations and the models. We make a new comparison of the models with elemental and isotopic ratios from five observed supernovae and three supernova remnants. We find that the models and data tend to fall into two groups. In one group, low-density cores such as in a 3D merger model are slightly more consistent with the nucleosynthesis data, while the other group is slightly better identified with higher-density cores such as in single-degenerate 1D-3D deflagration models. Hence, we postulate that both types of environments appear to contribute nearly equally to observed SN Ia. We also note that observational constraints on the yields of 54Cr and 54Fe, if available, might be used as a means to clarify the degree of geometrical symmetry of SN Ia explosions.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aad233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4069-2817</orcidid><orcidid>https://orcid.org/0000-0002-4972-3803</orcidid><orcidid>https://orcid.org/0000-0002-5500-539X</orcidid><orcidid>https://orcid.org/0000-0002-2663-0540</orcidid><orcidid>https://orcid.org/0000-0001-9553-0685</orcidid><orcidid>https://orcid.org/0000-0003-2305-9091</orcidid><orcidid>https://orcid.org/0000000323059091</orcidid><orcidid>https://orcid.org/0000000226630540</orcidid><orcidid>https://orcid.org/0000000249723803</orcidid><orcidid>https://orcid.org/0000000195530685</orcidid><orcidid>https://orcid.org/0000000340692817</orcidid><orcidid>https://orcid.org/000000025500539X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-08, Vol.863 (2), p.176
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2365833980
source Institute of Physics Open Access Journal Titles
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
Cores
Deflagration
Density
Detonation
Explosions
Iron isotopes
Isotopes
Nuclear fusion
nuclear reactions, nucleosynthesis, abundances
nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs
Post-production processing
Supernova
Supernova remnants
Supernovae
supernovae: general
Thermonuclear explosions
Three dimensional models
white dwarfs
title Nucleosynthesis Constraints on the Explosion Mechanism for Type Ia Supernovae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleosynthesis%20Constraints%20on%20the%20Explosion%20Mechanism%20for%20Type%20Ia%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Mori,%20Kanji&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2018-08-20&rft.volume=863&rft.issue=2&rft.spage=176&rft.pages=176-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aad233&rft_dat=%3Cproquest_O3W%3E2365833980%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365833980&rft_id=info:pmid/&rfr_iscdi=true