Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line
Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack o...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-07, Vol.843 (1), p.64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | The Astrophysical journal |
container_volume | 843 |
creator | Carlin, E. S. Bianda, M. |
description | Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed. |
doi_str_mv | 10.3847/1538-4357/aa7800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365824643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365824643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</originalsourceid><addsrcrecordid>eNp9kM1rGzEQxUVJoU7ae4-C9thttBp5tT4Gk4-CoQW3EHIR2pGEZdaSIsmF9K_Pbl2aS-lpmJnfezweIe9b9hl6IS_bJfSNgKW81Fr2jL0ii7-nM7JgjImmA3n_hpyXsp9XvlotiNkmXX2s9pBi1iO9_hnH43QINDp6p8NoqQ6GPlh70IFun0Ld2eqRfoujzv6X_o36QDVd73I8xJJ2Nk__bbJYZ8OND_Ytee30WOy7P_OC_Li5_r6-azZfb7-srzYNCgm1QSkHcGYQxgIid1w6bFvXw8AN41ZqgUuU4KRZDQiDa9FAD1yvkKNgRsIF-XDyjaV6VdBXizuMIUxZFOddBwLghUo5Ph5tqWofjzlMwRSHbtlz0YmZYicKcywlW6dS9gedn1TL1Ny4mutVc73q1Pgk-XSS-JhePP-Df_wHrtNe9QJUqzqhknHwDGScj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365824643</pqid></control><display><type>article</type><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><source>IOP Publishing</source><creator>Carlin, E. S. ; Bianda, M.</creator><creatorcontrib>Carlin, E. S. ; Bianda, M.</creatorcontrib><description>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa7800</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmospheric models ; ATTENUATION ; CHROMOSPHERE ; Evolution ; Forward scattering ; Kinematics ; Line spectra ; Linear polarization ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; Morphology ; Periodic variations ; PERIODICITY ; POLARIZATION ; Polarized light ; RADIANT HEAT TRANSFER ; radiative transfer ; RESOLUTION ; SCATTERING ; SENSITIVITY ; SHOCK WAVES ; SIMULATION ; Solar magnetic field ; Solar models ; Solar spectrum ; SPECTRA ; STAR EVOLUTION ; STAR MODELS ; stars: atmospheres ; SUN ; Sun: chromosphere ; Temporal resolution ; Three dimensional models ; TIME DEPENDENCE ; Time integration ; VISIBLE RADIATION ; ZEEMAN EFFECT</subject><ispartof>The Astrophysical journal, 2017-07, Vol.843 (1), p.64</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</citedby><cites>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</cites><orcidid>0000-0002-0012-6581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa7800/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,38895,53872</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa7800$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663433$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlin, E. S.</creatorcontrib><creatorcontrib>Bianda, M.</creatorcontrib><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmospheric models</subject><subject>ATTENUATION</subject><subject>CHROMOSPHERE</subject><subject>Evolution</subject><subject>Forward scattering</subject><subject>Kinematics</subject><subject>Line spectra</subject><subject>Linear polarization</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Morphology</subject><subject>Periodic variations</subject><subject>PERIODICITY</subject><subject>POLARIZATION</subject><subject>Polarized light</subject><subject>RADIANT HEAT TRANSFER</subject><subject>radiative transfer</subject><subject>RESOLUTION</subject><subject>SCATTERING</subject><subject>SENSITIVITY</subject><subject>SHOCK WAVES</subject><subject>SIMULATION</subject><subject>Solar magnetic field</subject><subject>Solar models</subject><subject>Solar spectrum</subject><subject>SPECTRA</subject><subject>STAR EVOLUTION</subject><subject>STAR MODELS</subject><subject>stars: atmospheres</subject><subject>SUN</subject><subject>Sun: chromosphere</subject><subject>Temporal resolution</subject><subject>Three dimensional models</subject><subject>TIME DEPENDENCE</subject><subject>Time integration</subject><subject>VISIBLE RADIATION</subject><subject>ZEEMAN EFFECT</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1rGzEQxUVJoU7ae4-C9thttBp5tT4Gk4-CoQW3EHIR2pGEZdaSIsmF9K_Pbl2aS-lpmJnfezweIe9b9hl6IS_bJfSNgKW81Fr2jL0ii7-nM7JgjImmA3n_hpyXsp9XvlotiNkmXX2s9pBi1iO9_hnH43QINDp6p8NoqQ6GPlh70IFun0Ld2eqRfoujzv6X_o36QDVd73I8xJJ2Nk__bbJYZ8OND_Ytee30WOy7P_OC_Li5_r6-azZfb7-srzYNCgm1QSkHcGYQxgIid1w6bFvXw8AN41ZqgUuU4KRZDQiDa9FAD1yvkKNgRsIF-XDyjaV6VdBXizuMIUxZFOddBwLghUo5Ph5tqWofjzlMwRSHbtlz0YmZYicKcywlW6dS9gedn1TL1Ny4mutVc73q1Pgk-XSS-JhePP-Df_wHrtNe9QJUqzqhknHwDGScj0w</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Carlin, E. S.</creator><creator>Bianda, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0012-6581</orcidid></search><sort><creationdate>20170701</creationdate><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><author>Carlin, E. S. ; Bianda, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmospheric models</topic><topic>ATTENUATION</topic><topic>CHROMOSPHERE</topic><topic>Evolution</topic><topic>Forward scattering</topic><topic>Kinematics</topic><topic>Line spectra</topic><topic>Linear polarization</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Morphology</topic><topic>Periodic variations</topic><topic>PERIODICITY</topic><topic>POLARIZATION</topic><topic>Polarized light</topic><topic>RADIANT HEAT TRANSFER</topic><topic>radiative transfer</topic><topic>RESOLUTION</topic><topic>SCATTERING</topic><topic>SENSITIVITY</topic><topic>SHOCK WAVES</topic><topic>SIMULATION</topic><topic>Solar magnetic field</topic><topic>Solar models</topic><topic>Solar spectrum</topic><topic>SPECTRA</topic><topic>STAR EVOLUTION</topic><topic>STAR MODELS</topic><topic>stars: atmospheres</topic><topic>SUN</topic><topic>Sun: chromosphere</topic><topic>Temporal resolution</topic><topic>Three dimensional models</topic><topic>TIME DEPENDENCE</topic><topic>Time integration</topic><topic>VISIBLE RADIATION</topic><topic>ZEEMAN EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlin, E. S.</creatorcontrib><creatorcontrib>Bianda, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carlin, E. S.</au><au>Bianda, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>843</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa7800</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0012-6581</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-07, Vol.843 (1), p.64 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365824643 |
source | IOP Publishing |
subjects | Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Atmospheric models ATTENUATION CHROMOSPHERE Evolution Forward scattering Kinematics Line spectra Linear polarization MAGNETIC FIELDS MAGNETOHYDRODYNAMICS Morphology Periodic variations PERIODICITY POLARIZATION Polarized light RADIANT HEAT TRANSFER radiative transfer RESOLUTION SCATTERING SENSITIVITY SHOCK WAVES SIMULATION Solar magnetic field Solar models Solar spectrum SPECTRA STAR EVOLUTION STAR MODELS stars: atmospheres SUN Sun: chromosphere Temporal resolution Three dimensional models TIME DEPENDENCE Time integration VISIBLE RADIATION ZEEMAN EFFECT |
title | Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Evolution%20of%20Hanle%20and%20Zeeman%20Synthetic%20Polarization%20in%20a%20Chromospheric%20Spectral%20Line&rft.jtitle=The%20Astrophysical%20journal&rft.au=Carlin,%20E.%20S.&rft.date=2017-07-01&rft.volume=843&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa7800&rft_dat=%3Cproquest_O3W%3E2365824643%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365824643&rft_id=info:pmid/&rfr_iscdi=true |