Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-07, Vol.843 (1), p.64
Hauptverfasser: Carlin, E. S., Bianda, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 64
container_title The Astrophysical journal
container_volume 843
creator Carlin, E. S.
Bianda, M.
description Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.
doi_str_mv 10.3847/1538-4357/aa7800
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365824643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365824643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</originalsourceid><addsrcrecordid>eNp9kM1rGzEQxUVJoU7ae4-C9thttBp5tT4Gk4-CoQW3EHIR2pGEZdaSIsmF9K_Pbl2aS-lpmJnfezweIe9b9hl6IS_bJfSNgKW81Fr2jL0ii7-nM7JgjImmA3n_hpyXsp9XvlotiNkmXX2s9pBi1iO9_hnH43QINDp6p8NoqQ6GPlh70IFun0Ld2eqRfoujzv6X_o36QDVd73I8xJJ2Nk__bbJYZ8OND_Ytee30WOy7P_OC_Li5_r6-azZfb7-srzYNCgm1QSkHcGYQxgIid1w6bFvXw8AN41ZqgUuU4KRZDQiDa9FAD1yvkKNgRsIF-XDyjaV6VdBXizuMIUxZFOddBwLghUo5Ph5tqWofjzlMwRSHbtlz0YmZYicKcywlW6dS9gedn1TL1Ny4mutVc73q1Pgk-XSS-JhePP-Df_wHrtNe9QJUqzqhknHwDGScj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365824643</pqid></control><display><type>article</type><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><source>IOP Publishing</source><creator>Carlin, E. S. ; Bianda, M.</creator><creatorcontrib>Carlin, E. S. ; Bianda, M.</creatorcontrib><description>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa7800</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmospheric models ; ATTENUATION ; CHROMOSPHERE ; Evolution ; Forward scattering ; Kinematics ; Line spectra ; Linear polarization ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; Morphology ; Periodic variations ; PERIODICITY ; POLARIZATION ; Polarized light ; RADIANT HEAT TRANSFER ; radiative transfer ; RESOLUTION ; SCATTERING ; SENSITIVITY ; SHOCK WAVES ; SIMULATION ; Solar magnetic field ; Solar models ; Solar spectrum ; SPECTRA ; STAR EVOLUTION ; STAR MODELS ; stars: atmospheres ; SUN ; Sun: chromosphere ; Temporal resolution ; Three dimensional models ; TIME DEPENDENCE ; Time integration ; VISIBLE RADIATION ; ZEEMAN EFFECT</subject><ispartof>The Astrophysical journal, 2017-07, Vol.843 (1), p.64</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</citedby><cites>FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</cites><orcidid>0000-0002-0012-6581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa7800/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,38895,53872</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa7800$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663433$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlin, E. S.</creatorcontrib><creatorcontrib>Bianda, M.</creatorcontrib><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmospheric models</subject><subject>ATTENUATION</subject><subject>CHROMOSPHERE</subject><subject>Evolution</subject><subject>Forward scattering</subject><subject>Kinematics</subject><subject>Line spectra</subject><subject>Linear polarization</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Morphology</subject><subject>Periodic variations</subject><subject>PERIODICITY</subject><subject>POLARIZATION</subject><subject>Polarized light</subject><subject>RADIANT HEAT TRANSFER</subject><subject>radiative transfer</subject><subject>RESOLUTION</subject><subject>SCATTERING</subject><subject>SENSITIVITY</subject><subject>SHOCK WAVES</subject><subject>SIMULATION</subject><subject>Solar magnetic field</subject><subject>Solar models</subject><subject>Solar spectrum</subject><subject>SPECTRA</subject><subject>STAR EVOLUTION</subject><subject>STAR MODELS</subject><subject>stars: atmospheres</subject><subject>SUN</subject><subject>Sun: chromosphere</subject><subject>Temporal resolution</subject><subject>Three dimensional models</subject><subject>TIME DEPENDENCE</subject><subject>Time integration</subject><subject>VISIBLE RADIATION</subject><subject>ZEEMAN EFFECT</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1rGzEQxUVJoU7ae4-C9thttBp5tT4Gk4-CoQW3EHIR2pGEZdaSIsmF9K_Pbl2aS-lpmJnfezweIe9b9hl6IS_bJfSNgKW81Fr2jL0ii7-nM7JgjImmA3n_hpyXsp9XvlotiNkmXX2s9pBi1iO9_hnH43QINDp6p8NoqQ6GPlh70IFun0Ld2eqRfoujzv6X_o36QDVd73I8xJJ2Nk__bbJYZ8OND_Ytee30WOy7P_OC_Li5_r6-azZfb7-srzYNCgm1QSkHcGYQxgIid1w6bFvXw8AN41ZqgUuU4KRZDQiDa9FAD1yvkKNgRsIF-XDyjaV6VdBXizuMIUxZFOddBwLghUo5Ph5tqWofjzlMwRSHbtlz0YmZYicKcywlW6dS9gedn1TL1Ny4mutVc73q1Pgk-XSS-JhePP-Df_wHrtNe9QJUqzqhknHwDGScj0w</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Carlin, E. S.</creator><creator>Bianda, M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0012-6581</orcidid></search><sort><creationdate>20170701</creationdate><title>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</title><author>Carlin, E. S. ; Bianda, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-c77b3fdb4de3cc2f27fc11f83b2d02e7a4c5c73f7d9bc3bf1cd3832a9c2c40d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmospheric models</topic><topic>ATTENUATION</topic><topic>CHROMOSPHERE</topic><topic>Evolution</topic><topic>Forward scattering</topic><topic>Kinematics</topic><topic>Line spectra</topic><topic>Linear polarization</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Morphology</topic><topic>Periodic variations</topic><topic>PERIODICITY</topic><topic>POLARIZATION</topic><topic>Polarized light</topic><topic>RADIANT HEAT TRANSFER</topic><topic>radiative transfer</topic><topic>RESOLUTION</topic><topic>SCATTERING</topic><topic>SENSITIVITY</topic><topic>SHOCK WAVES</topic><topic>SIMULATION</topic><topic>Solar magnetic field</topic><topic>Solar models</topic><topic>Solar spectrum</topic><topic>SPECTRA</topic><topic>STAR EVOLUTION</topic><topic>STAR MODELS</topic><topic>stars: atmospheres</topic><topic>SUN</topic><topic>Sun: chromosphere</topic><topic>Temporal resolution</topic><topic>Three dimensional models</topic><topic>TIME DEPENDENCE</topic><topic>Time integration</topic><topic>VISIBLE RADIATION</topic><topic>ZEEMAN EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlin, E. S.</creatorcontrib><creatorcontrib>Bianda, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carlin, E. S.</au><au>Bianda, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>843</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa7800</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0012-6581</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-07, Vol.843 (1), p.64
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365824643
source IOP Publishing
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Atmospheric models
ATTENUATION
CHROMOSPHERE
Evolution
Forward scattering
Kinematics
Line spectra
Linear polarization
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
Morphology
Periodic variations
PERIODICITY
POLARIZATION
Polarized light
RADIANT HEAT TRANSFER
radiative transfer
RESOLUTION
SCATTERING
SENSITIVITY
SHOCK WAVES
SIMULATION
Solar magnetic field
Solar models
Solar spectrum
SPECTRA
STAR EVOLUTION
STAR MODELS
stars: atmospheres
SUN
Sun: chromosphere
Temporal resolution
Three dimensional models
TIME DEPENDENCE
Time integration
VISIBLE RADIATION
ZEEMAN EFFECT
title Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Evolution%20of%20Hanle%20and%20Zeeman%20Synthetic%20Polarization%20in%20a%20Chromospheric%20Spectral%20Line&rft.jtitle=The%20Astrophysical%20journal&rft.au=Carlin,%20E.%20S.&rft.date=2017-07-01&rft.volume=843&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa7800&rft_dat=%3Cproquest_O3W%3E2365824643%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365824643&rft_id=info:pmid/&rfr_iscdi=true