On the Origin of Fast Radio Bursts (FRBs)

We derive stringent constraints on the persistent source associated with FRB 121102: size , age year, energy erg, characteristic electron energy the radiating plasma is confined by a cold plasma of mass these properties are inconsistent with typical "magnetar wind nebulae" model prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-06, Vol.842 (1), p.34
1. Verfasser: Waxman, Eli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 34
container_title The Astrophysical journal
container_volume 842
creator Waxman, Eli
description We derive stringent constraints on the persistent source associated with FRB 121102: size , age year, energy erg, characteristic electron energy the radiating plasma is confined by a cold plasma of mass these properties are inconsistent with typical "magnetar wind nebulae" model predictions. The fact that suggests that the hot plasma was created by the ejection of a mildly relativistic, shell, which propagated into an extended ambient medium or collided with a pre-ejected shell. Independent of the persistent source model, we suggest a physical mechanism for the generation of fast radio bursts (FRBs): the ejection from an underlying compact object, cm, of highly relativistic shells with energy erg and Lorentz factor , into a surrounding e − p plasma with density (consistent with that inferred for the persistent source). For Es similar to observed FRB energies, plasma conditions appropriate for strong synchrotron maser emission at are formed. A significant fraction of the deposited energy is converted to an FRB with duration , accompanied by ∼10 MeV gamma-rays carrying less energy than the FRB. The inferred energy and mass associated with the source suggest some type of a "weak stellar explosion," where a neutron star is formed with relatively low mass and energy ejection. However, the current upper limit on R does not allow one to rule out , or the ejection of a larger mass well before the ejection of the confining shell.
doi_str_mv 10.3847/1538-4357/aa713e
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365785098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365785098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f13f9802287dd5b330e471699f4c52010d03f8cfa3e0c606f606e359c766b84c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3jwEvFlybbL6PWqwKhUJR8BbSbGJTdFOT9OC_d5cVe_IwDDM88zI8AFxidEskFVPMiKwoYWJqjMDEHYHR3-oYjBBCtOJEvJ2Cs5y3_VgrNQKTZQvLxsFlCu-hhdHDuckFrkwTIrzfp1wyvJ6v7vPkHJx485HdxW8fg9f5w8vsqVosH59nd4vKUkpL5THxSqK6lqJp2JoQ5KjAXClPLasRRg0iXlpviEOWI-67coQpKzhfS2rJGFwNuTGXoLMNxdmNjW3rbNF9bM0JPVC7FL_2Lhe9jfvUdo_pmnAmJENKdhQaKJtizsl5vUvh06RvjZHuteneke4d6UFbd3IznIS4O2T-i_8A_h1pYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365785098</pqid></control><display><type>article</type><title>On the Origin of Fast Radio Bursts (FRBs)</title><source>IOP Publishing Free Content</source><creator>Waxman, Eli</creator><creatorcontrib>Waxman, Eli</creatorcontrib><description>We derive stringent constraints on the persistent source associated with FRB 121102: size , age year, energy erg, characteristic electron energy the radiating plasma is confined by a cold plasma of mass these properties are inconsistent with typical "magnetar wind nebulae" model predictions. The fact that suggests that the hot plasma was created by the ejection of a mildly relativistic, shell, which propagated into an extended ambient medium or collided with a pre-ejected shell. Independent of the persistent source model, we suggest a physical mechanism for the generation of fast radio bursts (FRBs): the ejection from an underlying compact object, cm, of highly relativistic shells with energy erg and Lorentz factor , into a surrounding e − p plasma with density (consistent with that inferred for the persistent source). For Es similar to observed FRB energies, plasma conditions appropriate for strong synchrotron maser emission at are formed. A significant fraction of the deposited energy is converted to an FRB with duration , accompanied by ∼10 MeV gamma-rays carrying less energy than the FRB. The inferred energy and mass associated with the source suggest some type of a "weak stellar explosion," where a neutron star is formed with relatively low mass and energy ejection. However, the current upper limit on R does not allow one to rule out , or the ejection of a larger mass well before the ejection of the confining shell.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa713e</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COLD PLASMA ; Cold plasmas ; COSMIC RADIO SOURCES ; Ejection ; Electron energy ; ELECTRONS ; EMISSION ; Energy ; GAMMA RADIATION ; Gamma rays ; HOT PLASMA ; Lorentz factor ; Magnetars ; Magnetic properties ; MASERS ; MASS ; MEV RANGE 01-10 ; NEBULAE ; NEUTRON STARS ; Radio bursts ; Relativism ; Relativistic effects ; RELATIVISTIC RANGE ; stars: neutron ; STELLAR WINDS ; SUPERNOVAE ; supernovae: general ; SYNCHROTRON RADIATION</subject><ispartof>The Astrophysical journal, 2017-06, Vol.842 (1), p.34</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f13f9802287dd5b330e471699f4c52010d03f8cfa3e0c606f606e359c766b84c3</citedby><cites>FETCH-LOGICAL-c444t-f13f9802287dd5b330e471699f4c52010d03f8cfa3e0c606f606e359c766b84c3</cites><orcidid>0000-0002-9038-5877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa713e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,38895,53872</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa713e$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22872634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Waxman, Eli</creatorcontrib><title>On the Origin of Fast Radio Bursts (FRBs)</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We derive stringent constraints on the persistent source associated with FRB 121102: size , age year, energy erg, characteristic electron energy the radiating plasma is confined by a cold plasma of mass these properties are inconsistent with typical "magnetar wind nebulae" model predictions. The fact that suggests that the hot plasma was created by the ejection of a mildly relativistic, shell, which propagated into an extended ambient medium or collided with a pre-ejected shell. Independent of the persistent source model, we suggest a physical mechanism for the generation of fast radio bursts (FRBs): the ejection from an underlying compact object, cm, of highly relativistic shells with energy erg and Lorentz factor , into a surrounding e − p plasma with density (consistent with that inferred for the persistent source). For Es similar to observed FRB energies, plasma conditions appropriate for strong synchrotron maser emission at are formed. A significant fraction of the deposited energy is converted to an FRB with duration , accompanied by ∼10 MeV gamma-rays carrying less energy than the FRB. The inferred energy and mass associated with the source suggest some type of a "weak stellar explosion," where a neutron star is formed with relatively low mass and energy ejection. However, the current upper limit on R does not allow one to rule out , or the ejection of a larger mass well before the ejection of the confining shell.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COLD PLASMA</subject><subject>Cold plasmas</subject><subject>COSMIC RADIO SOURCES</subject><subject>Ejection</subject><subject>Electron energy</subject><subject>ELECTRONS</subject><subject>EMISSION</subject><subject>Energy</subject><subject>GAMMA RADIATION</subject><subject>Gamma rays</subject><subject>HOT PLASMA</subject><subject>Lorentz factor</subject><subject>Magnetars</subject><subject>Magnetic properties</subject><subject>MASERS</subject><subject>MASS</subject><subject>MEV RANGE 01-10</subject><subject>NEBULAE</subject><subject>NEUTRON STARS</subject><subject>Radio bursts</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>RELATIVISTIC RANGE</subject><subject>stars: neutron</subject><subject>STELLAR WINDS</subject><subject>SUPERNOVAE</subject><subject>supernovae: general</subject><subject>SYNCHROTRON RADIATION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3jwEvFlybbL6PWqwKhUJR8BbSbGJTdFOT9OC_d5cVe_IwDDM88zI8AFxidEskFVPMiKwoYWJqjMDEHYHR3-oYjBBCtOJEvJ2Cs5y3_VgrNQKTZQvLxsFlCu-hhdHDuckFrkwTIrzfp1wyvJ6v7vPkHJx485HdxW8fg9f5w8vsqVosH59nd4vKUkpL5THxSqK6lqJp2JoQ5KjAXClPLasRRg0iXlpviEOWI-67coQpKzhfS2rJGFwNuTGXoLMNxdmNjW3rbNF9bM0JPVC7FL_2Lhe9jfvUdo_pmnAmJENKdhQaKJtizsl5vUvh06RvjZHuteneke4d6UFbd3IznIS4O2T-i_8A_h1pYg</recordid><startdate>20170610</startdate><enddate>20170610</enddate><creator>Waxman, Eli</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9038-5877</orcidid></search><sort><creationdate>20170610</creationdate><title>On the Origin of Fast Radio Bursts (FRBs)</title><author>Waxman, Eli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f13f9802287dd5b330e471699f4c52010d03f8cfa3e0c606f606e359c766b84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COLD PLASMA</topic><topic>Cold plasmas</topic><topic>COSMIC RADIO SOURCES</topic><topic>Ejection</topic><topic>Electron energy</topic><topic>ELECTRONS</topic><topic>EMISSION</topic><topic>Energy</topic><topic>GAMMA RADIATION</topic><topic>Gamma rays</topic><topic>HOT PLASMA</topic><topic>Lorentz factor</topic><topic>Magnetars</topic><topic>Magnetic properties</topic><topic>MASERS</topic><topic>MASS</topic><topic>MEV RANGE 01-10</topic><topic>NEBULAE</topic><topic>NEUTRON STARS</topic><topic>Radio bursts</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>RELATIVISTIC RANGE</topic><topic>stars: neutron</topic><topic>STELLAR WINDS</topic><topic>SUPERNOVAE</topic><topic>supernovae: general</topic><topic>SYNCHROTRON RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waxman, Eli</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Waxman, Eli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Origin of Fast Radio Bursts (FRBs)</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-06-10</date><risdate>2017</risdate><volume>842</volume><issue>1</issue><spage>34</spage><pages>34-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We derive stringent constraints on the persistent source associated with FRB 121102: size , age year, energy erg, characteristic electron energy the radiating plasma is confined by a cold plasma of mass these properties are inconsistent with typical "magnetar wind nebulae" model predictions. The fact that suggests that the hot plasma was created by the ejection of a mildly relativistic, shell, which propagated into an extended ambient medium or collided with a pre-ejected shell. Independent of the persistent source model, we suggest a physical mechanism for the generation of fast radio bursts (FRBs): the ejection from an underlying compact object, cm, of highly relativistic shells with energy erg and Lorentz factor , into a surrounding e − p plasma with density (consistent with that inferred for the persistent source). For Es similar to observed FRB energies, plasma conditions appropriate for strong synchrotron maser emission at are formed. A significant fraction of the deposited energy is converted to an FRB with duration , accompanied by ∼10 MeV gamma-rays carrying less energy than the FRB. The inferred energy and mass associated with the source suggest some type of a "weak stellar explosion," where a neutron star is formed with relatively low mass and energy ejection. However, the current upper limit on R does not allow one to rule out , or the ejection of a larger mass well before the ejection of the confining shell.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa713e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9038-5877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-06, Vol.842 (1), p.34
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365785098
source IOP Publishing Free Content
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COLD PLASMA
Cold plasmas
COSMIC RADIO SOURCES
Ejection
Electron energy
ELECTRONS
EMISSION
Energy
GAMMA RADIATION
Gamma rays
HOT PLASMA
Lorentz factor
Magnetars
Magnetic properties
MASERS
MASS
MEV RANGE 01-10
NEBULAE
NEUTRON STARS
Radio bursts
Relativism
Relativistic effects
RELATIVISTIC RANGE
stars: neutron
STELLAR WINDS
SUPERNOVAE
supernovae: general
SYNCHROTRON RADIATION
title On the Origin of Fast Radio Bursts (FRBs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Origin%20of%20Fast%20Radio%20Bursts%20(FRBs)&rft.jtitle=The%20Astrophysical%20journal&rft.au=Waxman,%20Eli&rft.date=2017-06-10&rft.volume=842&rft.issue=1&rft.spage=34&rft.pages=34-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa713e&rft_dat=%3Cproquest_O3W%3E2365785098%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365785098&rft_id=info:pmid/&rfr_iscdi=true