Determining Fireball Fates Using the α–β Criterion
As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. Ho...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-11, Vol.885 (2), p.115 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | The Astrophysical journal |
container_volume | 885 |
creator | Sansom, Eleanor K. Gritsevich, Maria Devillepoix, Hadrien A. R. Jansen-Sturgeon, Trent Shober, Patrick Bland, Phil A. Towner, Martin C. Cupák, Martin Howie, Robert M. Hartig, Benjamin A. D. |
description | As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball’s final height and velocity—low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters,
α
(ballistic coefficient) and
β
(mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information.
α
and
β
can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an
α
–
β
diagram can quickly identify which fireballs are likely meteorite candidates. |
doi_str_mv | 10.3847/1538-4357/ab4516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365762115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365762115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2286-fba8810e353d53d72faaba45305ff5077d7333301277c9172ff4c2a8c46eb1b73</originalsourceid><addsrcrecordid>eNo9kM9KxDAQxoMoWKt3jwXPdfO3SY9S7SoseHHBW0i6iWbptmvSPXjzHXwBX0EfwQfYh_BJTKk4DAzzzccM8wPgHMFLIiifIUZETgnjM6UpQ8UBSP6lQ5BACGleEP54DE5CWI8tLssE8GszGL9xneuestp5o1XbZrUaTMiWYRSHZ5PtP3_e3vdf3x-Vd9Hu-u4UHFnVBnP2V1OwrG8eqtt8cT-_q64WeYOxKHKrlRAIGsLIKibHVimtKCOQWcsg5ytOYkCEOW9KFOeWNliJhhZGI81JCi6mvVvfv-xMGOS63_kunpSYFIwXGMU3UwAnV-P7ELyxcuvdRvlXiaAc8ciRhRxZyAkP-QUpR1mM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365762115</pqid></control><display><type>article</type><title>Determining Fireball Fates Using the α–β Criterion</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sansom, Eleanor K. ; Gritsevich, Maria ; Devillepoix, Hadrien A. R. ; Jansen-Sturgeon, Trent ; Shober, Patrick ; Bland, Phil A. ; Towner, Martin C. ; Cupák, Martin ; Howie, Robert M. ; Hartig, Benjamin A. D.</creator><creatorcontrib>Sansom, Eleanor K. ; Gritsevich, Maria ; Devillepoix, Hadrien A. R. ; Jansen-Sturgeon, Trent ; Shober, Patrick ; Bland, Phil A. ; Towner, Martin C. ; Cupák, Martin ; Howie, Robert M. ; Hartig, Benjamin A. D.</creatorcontrib><description>As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball’s final height and velocity—low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters,
α
(ballistic coefficient) and
β
(mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information.
α
and
β
can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an
α
–
β
diagram can quickly identify which fireballs are likely meteorite candidates.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab4516</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Astrophysics ; Bulk density ; Coefficients ; Deceleration ; Empirical analysis ; Fireballs ; Mathematical analysis ; Meteoroids ; Meteors & meteorites ; Parameters ; Trajectory analysis ; Triangulation</subject><ispartof>The Astrophysical journal, 2019-11, Vol.885 (2), p.115</ispartof><rights>Copyright IOP Publishing Nov 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2286-fba8810e353d53d72faaba45305ff5077d7333301277c9172ff4c2a8c46eb1b73</citedby><cites>FETCH-LOGICAL-c2286-fba8810e353d53d72faaba45305ff5077d7333301277c9172ff4c2a8c46eb1b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sansom, Eleanor K.</creatorcontrib><creatorcontrib>Gritsevich, Maria</creatorcontrib><creatorcontrib>Devillepoix, Hadrien A. R.</creatorcontrib><creatorcontrib>Jansen-Sturgeon, Trent</creatorcontrib><creatorcontrib>Shober, Patrick</creatorcontrib><creatorcontrib>Bland, Phil A.</creatorcontrib><creatorcontrib>Towner, Martin C.</creatorcontrib><creatorcontrib>Cupák, Martin</creatorcontrib><creatorcontrib>Howie, Robert M.</creatorcontrib><creatorcontrib>Hartig, Benjamin A. D.</creatorcontrib><title>Determining Fireball Fates Using the α–β Criterion</title><title>The Astrophysical journal</title><description>As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball’s final height and velocity—low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters,
α
(ballistic coefficient) and
β
(mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information.
α
and
β
can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an
α
–
β
diagram can quickly identify which fireballs are likely meteorite candidates.</description><subject>Astrophysics</subject><subject>Bulk density</subject><subject>Coefficients</subject><subject>Deceleration</subject><subject>Empirical analysis</subject><subject>Fireballs</subject><subject>Mathematical analysis</subject><subject>Meteoroids</subject><subject>Meteors & meteorites</subject><subject>Parameters</subject><subject>Trajectory analysis</subject><subject>Triangulation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KxDAQxoMoWKt3jwXPdfO3SY9S7SoseHHBW0i6iWbptmvSPXjzHXwBX0EfwQfYh_BJTKk4DAzzzccM8wPgHMFLIiifIUZETgnjM6UpQ8UBSP6lQ5BACGleEP54DE5CWI8tLssE8GszGL9xneuestp5o1XbZrUaTMiWYRSHZ5PtP3_e3vdf3x-Vd9Hu-u4UHFnVBnP2V1OwrG8eqtt8cT-_q64WeYOxKHKrlRAIGsLIKibHVimtKCOQWcsg5ytOYkCEOW9KFOeWNliJhhZGI81JCi6mvVvfv-xMGOS63_kunpSYFIwXGMU3UwAnV-P7ELyxcuvdRvlXiaAc8ciRhRxZyAkP-QUpR1mM</recordid><startdate>20191110</startdate><enddate>20191110</enddate><creator>Sansom, Eleanor K.</creator><creator>Gritsevich, Maria</creator><creator>Devillepoix, Hadrien A. R.</creator><creator>Jansen-Sturgeon, Trent</creator><creator>Shober, Patrick</creator><creator>Bland, Phil A.</creator><creator>Towner, Martin C.</creator><creator>Cupák, Martin</creator><creator>Howie, Robert M.</creator><creator>Hartig, Benjamin A. D.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20191110</creationdate><title>Determining Fireball Fates Using the α–β Criterion</title><author>Sansom, Eleanor K. ; Gritsevich, Maria ; Devillepoix, Hadrien A. R. ; Jansen-Sturgeon, Trent ; Shober, Patrick ; Bland, Phil A. ; Towner, Martin C. ; Cupák, Martin ; Howie, Robert M. ; Hartig, Benjamin A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2286-fba8810e353d53d72faaba45305ff5077d7333301277c9172ff4c2a8c46eb1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Bulk density</topic><topic>Coefficients</topic><topic>Deceleration</topic><topic>Empirical analysis</topic><topic>Fireballs</topic><topic>Mathematical analysis</topic><topic>Meteoroids</topic><topic>Meteors & meteorites</topic><topic>Parameters</topic><topic>Trajectory analysis</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansom, Eleanor K.</creatorcontrib><creatorcontrib>Gritsevich, Maria</creatorcontrib><creatorcontrib>Devillepoix, Hadrien A. R.</creatorcontrib><creatorcontrib>Jansen-Sturgeon, Trent</creatorcontrib><creatorcontrib>Shober, Patrick</creatorcontrib><creatorcontrib>Bland, Phil A.</creatorcontrib><creatorcontrib>Towner, Martin C.</creatorcontrib><creatorcontrib>Cupák, Martin</creatorcontrib><creatorcontrib>Howie, Robert M.</creatorcontrib><creatorcontrib>Hartig, Benjamin A. D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansom, Eleanor K.</au><au>Gritsevich, Maria</au><au>Devillepoix, Hadrien A. R.</au><au>Jansen-Sturgeon, Trent</au><au>Shober, Patrick</au><au>Bland, Phil A.</au><au>Towner, Martin C.</au><au>Cupák, Martin</au><au>Howie, Robert M.</au><au>Hartig, Benjamin A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Fireball Fates Using the α–β Criterion</atitle><jtitle>The Astrophysical journal</jtitle><date>2019-11-10</date><risdate>2019</risdate><volume>885</volume><issue>2</issue><spage>115</spage><pages>115-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball’s final height and velocity—low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters,
α
(ballistic coefficient) and
β
(mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information.
α
and
β
can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an
α
–
β
diagram can quickly identify which fireballs are likely meteorite candidates.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/ab4516</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-11, Vol.885 (2), p.115 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365762115 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrophysics Bulk density Coefficients Deceleration Empirical analysis Fireballs Mathematical analysis Meteoroids Meteors & meteorites Parameters Trajectory analysis Triangulation |
title | Determining Fireball Fates Using the α–β Criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Fireball%20Fates%20Using%20the%20%CE%B1%E2%80%93%CE%B2%C2%A0Criterion&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sansom,%20Eleanor%20K.&rft.date=2019-11-10&rft.volume=885&rft.issue=2&rft.spage=115&rft.pages=115-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab4516&rft_dat=%3Cproquest_cross%3E2365762115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365762115&rft_id=info:pmid/&rfr_iscdi=true |