Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations
We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energeti...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-07, Vol.862 (1), p.76 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | The Astrophysical journal |
container_volume | 862 |
creator | Procházka, Ondřej Reid, Aaron Milligan, Ryan O. Simões, Paulo J. A. Allred, Joel C. Mathioudakis, Mihalis |
description | We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin. |
doi_str_mv | 10.3847/1538-4357/aaca37 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365733969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365733969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwGv1qVN0jRHHZsOBhM30Vt5TdIto2trmir7722p6MnL-8XnfR_vi9B1SO5owsQk5DQJGOViAqCAihM0-h2dohEhhAUxFe_n6KJp9n0bSTlC2YupXaVbZcst3hxrgxcL_Laz3gSF3e48XlcFODzvgsGrrDHuE7ytygZ_Wb_Ds8Io76oSQ6nxs6t8Vz4YOOC1PbTFQF6isxyKxlz95DF6nc8206dguXpcTO-XgaKc-EDGGmJGFRFZzGKgoEUSGglScQgTKiOmlAi1zpiOI57lJsyyJOcaBOFAKKNjdDPodg99tKbx6b5qXdmdTCMac0GpjGVHkYFSrmoaZ_K0dvYA7piGJO2dTHvb0t62dHCyW7kdVmxV_2n-i38DucF1tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365733969</pqid></control><display><type>article</type><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</creator><creatorcontrib>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</creatorcontrib><description>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaca37</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Balmer lines ; Balmer series ; Chromosphere ; Computer simulation ; Continuum radiation ; Electron beams ; Emissions ; Fluxes ; Helium ; Particle beams ; Proton beams ; Solar energy ; Solar flares ; Sun: chromosphere ; Sun: flares ; Sun: photosphere ; Sun: UV radiation ; Sun: X-rays, gamma rays ; White light</subject><ispartof>The Astrophysical journal, 2018-07, Vol.862 (1), p.76</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</citedby><cites>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</cites><orcidid>0000-0003-4227-6809 ; 0000-0002-4819-1884 ; 0000-0001-5031-1892 ; 0000-0003-4215-5062 ; 0000-0002-7725-6296 ; 0000-0002-7695-4834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaca37/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Procházka, Ondřej</creatorcontrib><creatorcontrib>Reid, Aaron</creatorcontrib><creatorcontrib>Milligan, Ryan O.</creatorcontrib><creatorcontrib>Simões, Paulo J. A.</creatorcontrib><creatorcontrib>Allred, Joel C.</creatorcontrib><creatorcontrib>Mathioudakis, Mihalis</creatorcontrib><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Balmer lines</subject><subject>Balmer series</subject><subject>Chromosphere</subject><subject>Computer simulation</subject><subject>Continuum radiation</subject><subject>Electron beams</subject><subject>Emissions</subject><subject>Fluxes</subject><subject>Helium</subject><subject>Particle beams</subject><subject>Proton beams</subject><subject>Solar energy</subject><subject>Solar flares</subject><subject>Sun: chromosphere</subject><subject>Sun: flares</subject><subject>Sun: photosphere</subject><subject>Sun: UV radiation</subject><subject>Sun: X-rays, gamma rays</subject><subject>White light</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAUx4MoOKd3jwGv1qVN0jRHHZsOBhM30Vt5TdIto2trmir7722p6MnL-8XnfR_vi9B1SO5owsQk5DQJGOViAqCAihM0-h2dohEhhAUxFe_n6KJp9n0bSTlC2YupXaVbZcst3hxrgxcL_Laz3gSF3e48XlcFODzvgsGrrDHuE7ytygZ_Wb_Ds8Io76oSQ6nxs6t8Vz4YOOC1PbTFQF6isxyKxlz95DF6nc8206dguXpcTO-XgaKc-EDGGmJGFRFZzGKgoEUSGglScQgTKiOmlAi1zpiOI57lJsyyJOcaBOFAKKNjdDPodg99tKbx6b5qXdmdTCMac0GpjGVHkYFSrmoaZ_K0dvYA7piGJO2dTHvb0t62dHCyW7kdVmxV_2n-i38DucF1tQ</recordid><startdate>20180720</startdate><enddate>20180720</enddate><creator>Procházka, Ondřej</creator><creator>Reid, Aaron</creator><creator>Milligan, Ryan O.</creator><creator>Simões, Paulo J. A.</creator><creator>Allred, Joel C.</creator><creator>Mathioudakis, Mihalis</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4227-6809</orcidid><orcidid>https://orcid.org/0000-0002-4819-1884</orcidid><orcidid>https://orcid.org/0000-0001-5031-1892</orcidid><orcidid>https://orcid.org/0000-0003-4215-5062</orcidid><orcidid>https://orcid.org/0000-0002-7725-6296</orcidid><orcidid>https://orcid.org/0000-0002-7695-4834</orcidid></search><sort><creationdate>20180720</creationdate><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><author>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Balmer lines</topic><topic>Balmer series</topic><topic>Chromosphere</topic><topic>Computer simulation</topic><topic>Continuum radiation</topic><topic>Electron beams</topic><topic>Emissions</topic><topic>Fluxes</topic><topic>Helium</topic><topic>Particle beams</topic><topic>Proton beams</topic><topic>Solar energy</topic><topic>Solar flares</topic><topic>Sun: chromosphere</topic><topic>Sun: flares</topic><topic>Sun: photosphere</topic><topic>Sun: UV radiation</topic><topic>Sun: X-rays, gamma rays</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procházka, Ondřej</creatorcontrib><creatorcontrib>Reid, Aaron</creatorcontrib><creatorcontrib>Milligan, Ryan O.</creatorcontrib><creatorcontrib>Simões, Paulo J. A.</creatorcontrib><creatorcontrib>Allred, Joel C.</creatorcontrib><creatorcontrib>Mathioudakis, Mihalis</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procházka, Ondřej</au><au>Reid, Aaron</au><au>Milligan, Ryan O.</au><au>Simões, Paulo J. A.</au><au>Allred, Joel C.</au><au>Mathioudakis, Mihalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-07-20</date><risdate>2018</risdate><volume>862</volume><issue>1</issue><spage>76</spage><pages>76-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaca37</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4227-6809</orcidid><orcidid>https://orcid.org/0000-0002-4819-1884</orcidid><orcidid>https://orcid.org/0000-0001-5031-1892</orcidid><orcidid>https://orcid.org/0000-0003-4215-5062</orcidid><orcidid>https://orcid.org/0000-0002-7725-6296</orcidid><orcidid>https://orcid.org/0000-0002-7695-4834</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-07, Vol.862 (1), p.76 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365733969 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astrophysics Atmosphere Balmer lines Balmer series Chromosphere Computer simulation Continuum radiation Electron beams Emissions Fluxes Helium Particle beams Proton beams Solar energy Solar flares Sun: chromosphere Sun: flares Sun: photosphere Sun: UV radiation Sun: X-rays, gamma rays White light |
title | Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducing%20Type%20II%20White-light%20Solar%20Flare%20Observations%20with%20Electron%20and%20Proton%20Beam%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Proch%C3%A1zka,%20Ondr%CC%8Cej&rft.date=2018-07-20&rft.volume=862&rft.issue=1&rft.spage=76&rft.pages=76-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaca37&rft_dat=%3Cproquest_iop_j%3E2365733969%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365733969&rft_id=info:pmid/&rfr_iscdi=true |