Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations

We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energeti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-07, Vol.862 (1), p.76
Hauptverfasser: Procházka, Ondřej, Reid, Aaron, Milligan, Ryan O., Simões, Paulo J. A., Allred, Joel C., Mathioudakis, Mihalis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 76
container_title The Astrophysical journal
container_volume 862
creator Procházka, Ondřej
Reid, Aaron
Milligan, Ryan O.
Simões, Paulo J. A.
Allred, Joel C.
Mathioudakis, Mihalis
description We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.
doi_str_mv 10.3847/1538-4357/aaca37
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365733969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365733969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwGv1qVN0jRHHZsOBhM30Vt5TdIto2trmir7722p6MnL-8XnfR_vi9B1SO5owsQk5DQJGOViAqCAihM0-h2dohEhhAUxFe_n6KJp9n0bSTlC2YupXaVbZcst3hxrgxcL_Laz3gSF3e48XlcFODzvgsGrrDHuE7ytygZ_Wb_Ds8Io76oSQ6nxs6t8Vz4YOOC1PbTFQF6isxyKxlz95DF6nc8206dguXpcTO-XgaKc-EDGGmJGFRFZzGKgoEUSGglScQgTKiOmlAi1zpiOI57lJsyyJOcaBOFAKKNjdDPodg99tKbx6b5qXdmdTCMac0GpjGVHkYFSrmoaZ_K0dvYA7piGJO2dTHvb0t62dHCyW7kdVmxV_2n-i38DucF1tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365733969</pqid></control><display><type>article</type><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</creator><creatorcontrib>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</creatorcontrib><description>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaca37</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmosphere ; Balmer lines ; Balmer series ; Chromosphere ; Computer simulation ; Continuum radiation ; Electron beams ; Emissions ; Fluxes ; Helium ; Particle beams ; Proton beams ; Solar energy ; Solar flares ; Sun: chromosphere ; Sun: flares ; Sun: photosphere ; Sun: UV radiation ; Sun: X-rays, gamma rays ; White light</subject><ispartof>The Astrophysical journal, 2018-07, Vol.862 (1), p.76</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</citedby><cites>FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</cites><orcidid>0000-0003-4227-6809 ; 0000-0002-4819-1884 ; 0000-0001-5031-1892 ; 0000-0003-4215-5062 ; 0000-0002-7725-6296 ; 0000-0002-7695-4834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aaca37/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Procházka, Ondřej</creatorcontrib><creatorcontrib>Reid, Aaron</creatorcontrib><creatorcontrib>Milligan, Ryan O.</creatorcontrib><creatorcontrib>Simões, Paulo J. A.</creatorcontrib><creatorcontrib>Allred, Joel C.</creatorcontrib><creatorcontrib>Mathioudakis, Mihalis</creatorcontrib><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</description><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Balmer lines</subject><subject>Balmer series</subject><subject>Chromosphere</subject><subject>Computer simulation</subject><subject>Continuum radiation</subject><subject>Electron beams</subject><subject>Emissions</subject><subject>Fluxes</subject><subject>Helium</subject><subject>Particle beams</subject><subject>Proton beams</subject><subject>Solar energy</subject><subject>Solar flares</subject><subject>Sun: chromosphere</subject><subject>Sun: flares</subject><subject>Sun: photosphere</subject><subject>Sun: UV radiation</subject><subject>Sun: X-rays, gamma rays</subject><subject>White light</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAUx4MoOKd3jwGv1qVN0jRHHZsOBhM30Vt5TdIto2trmir7722p6MnL-8XnfR_vi9B1SO5owsQk5DQJGOViAqCAihM0-h2dohEhhAUxFe_n6KJp9n0bSTlC2YupXaVbZcst3hxrgxcL_Laz3gSF3e48XlcFODzvgsGrrDHuE7ytygZ_Wb_Ds8Io76oSQ6nxs6t8Vz4YOOC1PbTFQF6isxyKxlz95DF6nc8206dguXpcTO-XgaKc-EDGGmJGFRFZzGKgoEUSGglScQgTKiOmlAi1zpiOI57lJsyyJOcaBOFAKKNjdDPodg99tKbx6b5qXdmdTCMac0GpjGVHkYFSrmoaZ_K0dvYA7piGJO2dTHvb0t62dHCyW7kdVmxV_2n-i38DucF1tQ</recordid><startdate>20180720</startdate><enddate>20180720</enddate><creator>Procházka, Ondřej</creator><creator>Reid, Aaron</creator><creator>Milligan, Ryan O.</creator><creator>Simões, Paulo J. A.</creator><creator>Allred, Joel C.</creator><creator>Mathioudakis, Mihalis</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4227-6809</orcidid><orcidid>https://orcid.org/0000-0002-4819-1884</orcidid><orcidid>https://orcid.org/0000-0001-5031-1892</orcidid><orcidid>https://orcid.org/0000-0003-4215-5062</orcidid><orcidid>https://orcid.org/0000-0002-7725-6296</orcidid><orcidid>https://orcid.org/0000-0002-7695-4834</orcidid></search><sort><creationdate>20180720</creationdate><title>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</title><author>Procházka, Ondřej ; Reid, Aaron ; Milligan, Ryan O. ; Simões, Paulo J. A. ; Allred, Joel C. ; Mathioudakis, Mihalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-96da643c07b646a3ad781e9a9c5a183924cc71ddb4d625bfe1bb8f5da705a0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Balmer lines</topic><topic>Balmer series</topic><topic>Chromosphere</topic><topic>Computer simulation</topic><topic>Continuum radiation</topic><topic>Electron beams</topic><topic>Emissions</topic><topic>Fluxes</topic><topic>Helium</topic><topic>Particle beams</topic><topic>Proton beams</topic><topic>Solar energy</topic><topic>Solar flares</topic><topic>Sun: chromosphere</topic><topic>Sun: flares</topic><topic>Sun: photosphere</topic><topic>Sun: UV radiation</topic><topic>Sun: X-rays, gamma rays</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procházka, Ondřej</creatorcontrib><creatorcontrib>Reid, Aaron</creatorcontrib><creatorcontrib>Milligan, Ryan O.</creatorcontrib><creatorcontrib>Simões, Paulo J. A.</creatorcontrib><creatorcontrib>Allred, Joel C.</creatorcontrib><creatorcontrib>Mathioudakis, Mihalis</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procházka, Ondřej</au><au>Reid, Aaron</au><au>Milligan, Ryan O.</au><au>Simões, Paulo J. A.</au><au>Allred, Joel C.</au><au>Mathioudakis, Mihalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-07-20</date><risdate>2018</risdate><volume>862</volume><issue>1</issue><spage>76</spage><pages>76-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the cause of the suppressed Balmer series and the origin of the white-light continuum emission in the X1.0 class solar flare on 2014 June 11. We use radiative hydrodynamic simulations to model the response of the flaring atmosphere to both electron and proton beams, which are energetically constrained using Ramaty High Energy Solar Spectroscopic Imager and Fermi observations. A comparison of synthetic spectra with the observations allows us to narrow the range of beam fluxes and low energy cutoff that may be applicable to this event. We conclude that the electron and proton beams that can reproduce the observed spectral features are those that have relatively low fluxes and high values for the low energy cutoff. While electron beams shift the upper chromosphere and transition region to greater geometrical heights, proton beams with a similar flux leave these areas of the atmosphere relatively undisturbed. It is easier for proton beams to penetrate to the deeper layers and not deposit their energy in the upper chromosphere where the Balmer lines are formed. The relatively weak particle beams that are applicable to this flare do not cause a significant shift of the τ = 1 surface and the observed excess WL emission is optically thin.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaca37</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4227-6809</orcidid><orcidid>https://orcid.org/0000-0002-4819-1884</orcidid><orcidid>https://orcid.org/0000-0001-5031-1892</orcidid><orcidid>https://orcid.org/0000-0003-4215-5062</orcidid><orcidid>https://orcid.org/0000-0002-7725-6296</orcidid><orcidid>https://orcid.org/0000-0002-7695-4834</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-07, Vol.862 (1), p.76
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365733969
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astrophysics
Atmosphere
Balmer lines
Balmer series
Chromosphere
Computer simulation
Continuum radiation
Electron beams
Emissions
Fluxes
Helium
Particle beams
Proton beams
Solar energy
Solar flares
Sun: chromosphere
Sun: flares
Sun: photosphere
Sun: UV radiation
Sun: X-rays, gamma rays
White light
title Reproducing Type II White-light Solar Flare Observations with Electron and Proton Beam Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducing%20Type%20II%20White-light%20Solar%20Flare%20Observations%20with%20Electron%20and%20Proton%20Beam%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Proch%C3%A1zka,%20Ondr%CC%8Cej&rft.date=2018-07-20&rft.volume=862&rft.issue=1&rft.spage=76&rft.pages=76-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaca37&rft_dat=%3Cproquest_iop_j%3E2365733969%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365733969&rft_id=info:pmid/&rfr_iscdi=true