The μ-RWELL detector
The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2017-06, Vol.12 (6), p.C06027-C06027 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C06027 |
---|---|
container_issue | 6 |
container_start_page | C06027 |
container_title | Journal of instrumentation |
container_volume | 12 |
creator | Bencivenni, G. Benussi, L. Borgonovi, L. de Oliveira, R. Simone, P. De Felici, G. Gatta, M. Giacomelli, P. Morello, G. Ochi, A. Lener, M. Poli Ranieri, A. Ressegotti, M. Tskhadadze, E. Vai, I. Valentino, V. |
description | The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (>104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing. |
doi_str_mv | 10.1088/1748-0221/12/06/C06027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365706149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365706149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKLgunr0Kguea78vaX56lLL-QGFhWfEYkvQLuqhdk-7Bd_MZfCYtFfE0AzPMMMPYBcIVgjEl6soUwDmWyEtQZQMKuD5gsz_h8B8_Zic5bwFkLSuYsfPNEy2-Pov147JtFx0NFIY-nbKj6F4ynf3inD3cLDfNXdGubu-b67YIgvOh8GiiiRiE1-SjBEVeUlCghXciVFKjQvAduS4Ar7kUrtYx-KhNF7CjWszZ5ZS7S_37nvJgt_0-vf1UWi6U1KCwGl1qcoXU55wo2l16fnXpwyLY8QI7rrPjOovcgrLTBeIbARlNSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365706149</pqid></control><display><type>article</type><title>The μ-RWELL detector</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</creator><creatorcontrib>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</creatorcontrib><description>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (>104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/12/06/C06027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Diamond-like carbon ; Fluxes ; Foils ; Sensors ; Surface resistivity ; Technology transfer</subject><ispartof>Journal of instrumentation, 2017-06, Vol.12 (6), p.C06027-C06027</ispartof><rights>Copyright IOP Publishing Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</citedby><cites>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bencivenni, G.</creatorcontrib><creatorcontrib>Benussi, L.</creatorcontrib><creatorcontrib>Borgonovi, L.</creatorcontrib><creatorcontrib>de Oliveira, R.</creatorcontrib><creatorcontrib>Simone, P. De</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giacomelli, P.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Ochi, A.</creatorcontrib><creatorcontrib>Lener, M. Poli</creatorcontrib><creatorcontrib>Ranieri, A.</creatorcontrib><creatorcontrib>Ressegotti, M.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Vai, I.</creatorcontrib><creatorcontrib>Valentino, V.</creatorcontrib><title>The μ-RWELL detector</title><title>Journal of instrumentation</title><description>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (>104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</description><subject>Diamond-like carbon</subject><subject>Fluxes</subject><subject>Foils</subject><subject>Sensors</subject><subject>Surface resistivity</subject><subject>Technology transfer</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNUM1KxDAYDKLgunr0Kguea78vaX56lLL-QGFhWfEYkvQLuqhdk-7Bd_MZfCYtFfE0AzPMMMPYBcIVgjEl6soUwDmWyEtQZQMKuD5gsz_h8B8_Zic5bwFkLSuYsfPNEy2-Pov147JtFx0NFIY-nbKj6F4ynf3inD3cLDfNXdGubu-b67YIgvOh8GiiiRiE1-SjBEVeUlCghXciVFKjQvAduS4Ar7kUrtYx-KhNF7CjWszZ5ZS7S_37nvJgt_0-vf1UWi6U1KCwGl1qcoXU55wo2l16fnXpwyLY8QI7rrPjOovcgrLTBeIbARlNSg</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Bencivenni, G.</creator><creator>Benussi, L.</creator><creator>Borgonovi, L.</creator><creator>de Oliveira, R.</creator><creator>Simone, P. De</creator><creator>Felici, G.</creator><creator>Gatta, M.</creator><creator>Giacomelli, P.</creator><creator>Morello, G.</creator><creator>Ochi, A.</creator><creator>Lener, M. Poli</creator><creator>Ranieri, A.</creator><creator>Ressegotti, M.</creator><creator>Tskhadadze, E.</creator><creator>Vai, I.</creator><creator>Valentino, V.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170623</creationdate><title>The μ-RWELL detector</title><author>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diamond-like carbon</topic><topic>Fluxes</topic><topic>Foils</topic><topic>Sensors</topic><topic>Surface resistivity</topic><topic>Technology transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bencivenni, G.</creatorcontrib><creatorcontrib>Benussi, L.</creatorcontrib><creatorcontrib>Borgonovi, L.</creatorcontrib><creatorcontrib>de Oliveira, R.</creatorcontrib><creatorcontrib>Simone, P. De</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giacomelli, P.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Ochi, A.</creatorcontrib><creatorcontrib>Lener, M. Poli</creatorcontrib><creatorcontrib>Ranieri, A.</creatorcontrib><creatorcontrib>Ressegotti, M.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Vai, I.</creatorcontrib><creatorcontrib>Valentino, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bencivenni, G.</au><au>Benussi, L.</au><au>Borgonovi, L.</au><au>de Oliveira, R.</au><au>Simone, P. De</au><au>Felici, G.</au><au>Gatta, M.</au><au>Giacomelli, P.</au><au>Morello, G.</au><au>Ochi, A.</au><au>Lener, M. Poli</au><au>Ranieri, A.</au><au>Ressegotti, M.</au><au>Tskhadadze, E.</au><au>Vai, I.</au><au>Valentino, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The μ-RWELL detector</atitle><jtitle>Journal of instrumentation</jtitle><date>2017-06-23</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>C06027</spage><epage>C06027</epage><pages>C06027-C06027</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (>104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/12/06/C06027</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2017-06, Vol.12 (6), p.C06027-C06027 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2365706149 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Diamond-like carbon Fluxes Foils Sensors Surface resistivity Technology transfer |
title | The μ-RWELL detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CE%BC-RWELL%20detector&rft.jtitle=Journal%20of%20instrumentation&rft.au=Bencivenni,%20G.&rft.date=2017-06-23&rft.volume=12&rft.issue=6&rft.spage=C06027&rft.epage=C06027&rft.pages=C06027-C06027&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/12/06/C06027&rft_dat=%3Cproquest_cross%3E2365706149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365706149&rft_id=info:pmid/&rfr_iscdi=true |