The μ-RWELL detector

The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2017-06, Vol.12 (6), p.C06027-C06027
Hauptverfasser: Bencivenni, G., Benussi, L., Borgonovi, L., de Oliveira, R., Simone, P. De, Felici, G., Gatta, M., Giacomelli, P., Morello, G., Ochi, A., Lener, M. Poli, Ranieri, A., Ressegotti, M., Tskhadadze, E., Vai, I., Valentino, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C06027
container_issue 6
container_start_page C06027
container_title Journal of instrumentation
container_volume 12
creator Bencivenni, G.
Benussi, L.
Borgonovi, L.
de Oliveira, R.
Simone, P. De
Felici, G.
Gatta, M.
Giacomelli, P.
Morello, G.
Ochi, A.
Lener, M. Poli
Ranieri, A.
Ressegotti, M.
Tskhadadze, E.
Vai, I.
Valentino, V.
description The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (>104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.
doi_str_mv 10.1088/1748-0221/12/06/C06027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365706149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365706149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKLgunr0Kguea78vaX56lLL-QGFhWfEYkvQLuqhdk-7Bd_MZfCYtFfE0AzPMMMPYBcIVgjEl6soUwDmWyEtQZQMKuD5gsz_h8B8_Zic5bwFkLSuYsfPNEy2-Pov147JtFx0NFIY-nbKj6F4ynf3inD3cLDfNXdGubu-b67YIgvOh8GiiiRiE1-SjBEVeUlCghXciVFKjQvAduS4Ar7kUrtYx-KhNF7CjWszZ5ZS7S_37nvJgt_0-vf1UWi6U1KCwGl1qcoXU55wo2l16fnXpwyLY8QI7rrPjOovcgrLTBeIbARlNSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365706149</pqid></control><display><type>article</type><title>The μ-RWELL detector</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</creator><creatorcontrib>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</creatorcontrib><description>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (&gt;104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/12/06/C06027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Diamond-like carbon ; Fluxes ; Foils ; Sensors ; Surface resistivity ; Technology transfer</subject><ispartof>Journal of instrumentation, 2017-06, Vol.12 (6), p.C06027-C06027</ispartof><rights>Copyright IOP Publishing Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</citedby><cites>FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bencivenni, G.</creatorcontrib><creatorcontrib>Benussi, L.</creatorcontrib><creatorcontrib>Borgonovi, L.</creatorcontrib><creatorcontrib>de Oliveira, R.</creatorcontrib><creatorcontrib>Simone, P. De</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giacomelli, P.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Ochi, A.</creatorcontrib><creatorcontrib>Lener, M. Poli</creatorcontrib><creatorcontrib>Ranieri, A.</creatorcontrib><creatorcontrib>Ressegotti, M.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Vai, I.</creatorcontrib><creatorcontrib>Valentino, V.</creatorcontrib><title>The μ-RWELL detector</title><title>Journal of instrumentation</title><description>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (&gt;104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</description><subject>Diamond-like carbon</subject><subject>Fluxes</subject><subject>Foils</subject><subject>Sensors</subject><subject>Surface resistivity</subject><subject>Technology transfer</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNUM1KxDAYDKLgunr0Kguea78vaX56lLL-QGFhWfEYkvQLuqhdk-7Bd_MZfCYtFfE0AzPMMMPYBcIVgjEl6soUwDmWyEtQZQMKuD5gsz_h8B8_Zic5bwFkLSuYsfPNEy2-Pov147JtFx0NFIY-nbKj6F4ynf3inD3cLDfNXdGubu-b67YIgvOh8GiiiRiE1-SjBEVeUlCghXciVFKjQvAduS4Ar7kUrtYx-KhNF7CjWszZ5ZS7S_37nvJgt_0-vf1UWi6U1KCwGl1qcoXU55wo2l16fnXpwyLY8QI7rrPjOovcgrLTBeIbARlNSg</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Bencivenni, G.</creator><creator>Benussi, L.</creator><creator>Borgonovi, L.</creator><creator>de Oliveira, R.</creator><creator>Simone, P. De</creator><creator>Felici, G.</creator><creator>Gatta, M.</creator><creator>Giacomelli, P.</creator><creator>Morello, G.</creator><creator>Ochi, A.</creator><creator>Lener, M. Poli</creator><creator>Ranieri, A.</creator><creator>Ressegotti, M.</creator><creator>Tskhadadze, E.</creator><creator>Vai, I.</creator><creator>Valentino, V.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170623</creationdate><title>The μ-RWELL detector</title><author>Bencivenni, G. ; Benussi, L. ; Borgonovi, L. ; de Oliveira, R. ; Simone, P. De ; Felici, G. ; Gatta, M. ; Giacomelli, P. ; Morello, G. ; Ochi, A. ; Lener, M. Poli ; Ranieri, A. ; Ressegotti, M. ; Tskhadadze, E. ; Vai, I. ; Valentino, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b18f8f1c3b7ebf506eb5ec6073ba3c4571610bdeadc029253a97fcbf78dc1de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diamond-like carbon</topic><topic>Fluxes</topic><topic>Foils</topic><topic>Sensors</topic><topic>Surface resistivity</topic><topic>Technology transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bencivenni, G.</creatorcontrib><creatorcontrib>Benussi, L.</creatorcontrib><creatorcontrib>Borgonovi, L.</creatorcontrib><creatorcontrib>de Oliveira, R.</creatorcontrib><creatorcontrib>Simone, P. De</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giacomelli, P.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Ochi, A.</creatorcontrib><creatorcontrib>Lener, M. Poli</creatorcontrib><creatorcontrib>Ranieri, A.</creatorcontrib><creatorcontrib>Ressegotti, M.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Vai, I.</creatorcontrib><creatorcontrib>Valentino, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bencivenni, G.</au><au>Benussi, L.</au><au>Borgonovi, L.</au><au>de Oliveira, R.</au><au>Simone, P. De</au><au>Felici, G.</au><au>Gatta, M.</au><au>Giacomelli, P.</au><au>Morello, G.</au><au>Ochi, A.</au><au>Lener, M. Poli</au><au>Ranieri, A.</au><au>Ressegotti, M.</au><au>Tskhadadze, E.</au><au>Vai, I.</au><au>Valentino, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The μ-RWELL detector</atitle><jtitle>Journal of instrumentation</jtitle><date>2017-06-23</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>C06027</spage><epage>C06027</epage><pages>C06027-C06027</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (&gt;104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/12/06/C06027</doi></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2017-06, Vol.12 (6), p.C06027-C06027
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2365706149
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Diamond-like carbon
Fluxes
Foils
Sensors
Surface resistivity
Technology transfer
title The μ-RWELL detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CE%BC-RWELL%20detector&rft.jtitle=Journal%20of%20instrumentation&rft.au=Bencivenni,%20G.&rft.date=2017-06-23&rft.volume=12&rft.issue=6&rft.spage=C06027&rft.epage=C06027&rft.pages=C06027-C06027&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/12/06/C06027&rft_dat=%3Cproquest_cross%3E2365706149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365706149&rft_id=info:pmid/&rfr_iscdi=true