CHIME/FRB Detection of the Original Repeating Fast Radio Burst Source FRB 121102
We report the detection of a single burst from the first-discovered repeating fast radio burst (FRB) source, FRB 121102, with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and it...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2019-09, Vol.882 (2), p.L18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the detection of a single burst from the first-discovered repeating fast radio burst (FRB) source, FRB 121102, with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission extends down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7 , has fluence 12 3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this object at any frequency. We find evidence of subburst structure that drifts downward in frequency at a rate of −3.9 0.2 MHz ms−1. Our best fit tentatively suggests a dispersion measure of 563.6 0.5 pc cm−3, which is 1% higher than previously measured values. We set an upper limit on the scattering time at 500 MHz of 9.6 ms, which is consistent with expectations from the extrapolation from higher-frequency data. We have exposure to the position of FRB 121102 for a total of 11.3 hr within the FWHM of the synthesized beams at 600 MHz from 2018 July 25 to 2019 February 25. We estimate on the basis of this single event an average burst rate for FRB 121102 of 0.1-10 per day in the 400-800 MHz band for a median fluence threshold of 7 Jy ms in the stated time interval. |
---|---|
ISSN: | 2041-8205 2041-8213 |
DOI: | 10.3847/2041-8213/ab2c00 |