Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements
Temporal evolution of magnetic structures of the solar active region (AR) NOAA AR 11158, is simulated with our magnetohydrodynamic (MHD) simulation models using time-dependent solar-surface electric field or plasma flow data. Using the Solar Dynamics Observatory/Helioseismic Magnetic Imager vector m...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2019-02, Vol.871 (2), p.L28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L28 |
container_title | Astrophysical journal. Letters |
container_volume | 871 |
creator | Hayashi, Keiji Feng, Xueshang Xiong, Ming Jiang, Chaowei |
description | Temporal evolution of magnetic structures of the solar active region (AR) NOAA AR 11158, is simulated with our magnetohydrodynamic (MHD) simulation models using time-dependent solar-surface electric field or plasma flow data. Using the Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetogram data, the solar-surface boundary electric field maps are derived with our recently developed algorithm to reproduce the temporal evolution of solar-surface vector magnetic field as observed. The plasma motion velocity maps are calculated through the Differential Affine Velocity Estimator for Vector Magnetograms. In both data-driven models, the simulated evolutionary magnetic field structures at strong-field low-beta regions appear near force-free state, as the current helicity density ( ) are roughly constant along each field line. Although the magnetic energy simulated with the newly developed plasma-velocity-driven model is about 10% of that by the electric-field driven model, the plasma-velocity-driven model can maintain the frozen-in condition, and evolution of current and free energy generated by the solar-surface plasma motions can be spatially and temporally traced. The present MHD simulation models for AR system can be a step toward better, more realistic data-driven evolutionary modeling, in particular, establishing boundary treatments for introducing the time-dependent observation data in a physically and mathematically consistent manner. |
doi_str_mv | 10.3847/2041-8213/aaffcf |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2365652792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365652792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-eb64266bc00015c825d23f5e7a1936c96bc822a69c1d9dc9ee235cb6b7d250f43</originalsourceid><addsrcrecordid>eNp1UU1P20AQtaoilQbuPY7Uaw3rtb22jwgIiRRURKBXa7I7my6yvems3Sq_sH-rDkbh1NOM5n3Mk14UfUnERVpmxaUUWRKXMkkvEa3V9kN0ejx9PO4i_xR9DuFFCClUUp5Gf-9x21Hvf-4Ne7PvsHUa1q4dGuyd7wJYz7D2DTJc6d79Jnik7SswBNdt4cm1FAdiRwFusEfwFtYDW9QEDw2GFmHe-D-AnYHbhnTPo__cUWNg2VliJgOWfQsLapwP5MIhwBRqXJYtbonhxygccxzPk8E9YRiYWur6cBadWGwCnb_NWfQ8v326XsSr73fL66tVrNMi62PaqEwqtdFCiCTXpcyNTG1OBSZVqnQ1IqWUqCqdmMroikimud6oTWFkLmyWzqKvk--O_a-BQl-_-IG78WUtU5WrXBaVHFliYmn2ITDZeseuRd7XiagPddWHPupDN_VU1yj5Nkmc3717_pf-D0Fbm8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365652792</pqid></control><display><type>article</type><title>Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements</title><source>IOP Publishing Free Content</source><creator>Hayashi, Keiji ; Feng, Xueshang ; Xiong, Ming ; Jiang, Chaowei</creator><creatorcontrib>Hayashi, Keiji ; Feng, Xueshang ; Xiong, Ming ; Jiang, Chaowei</creatorcontrib><description>Temporal evolution of magnetic structures of the solar active region (AR) NOAA AR 11158, is simulated with our magnetohydrodynamic (MHD) simulation models using time-dependent solar-surface electric field or plasma flow data. Using the Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetogram data, the solar-surface boundary electric field maps are derived with our recently developed algorithm to reproduce the temporal evolution of solar-surface vector magnetic field as observed. The plasma motion velocity maps are calculated through the Differential Affine Velocity Estimator for Vector Magnetograms. In both data-driven models, the simulated evolutionary magnetic field structures at strong-field low-beta regions appear near force-free state, as the current helicity density ( ) are roughly constant along each field line. Although the magnetic energy simulated with the newly developed plasma-velocity-driven model is about 10% of that by the electric-field driven model, the plasma-velocity-driven model can maintain the frozen-in condition, and evolution of current and free energy generated by the solar-surface plasma motions can be spatially and temporally traced. The present MHD simulation models for AR system can be a step toward better, more realistic data-driven evolutionary modeling, in particular, establishing boundary treatments for introducing the time-dependent observation data in a physically and mathematically consistent manner.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/aaffcf</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Electric fields ; Evolution ; Evolutionary algorithms ; Fluid flow ; Free energy ; Helicity ; Magnetic fields ; Magnetohydrodynamic simulation ; Plasma ; Solar activity ; Solar activity regions ; Solar energy ; Solar magnetic field ; Solar observatories ; Sun: activity ; Sun: magnetic fields ; sunspots ; Time dependence ; Velocity</subject><ispartof>Astrophysical journal. Letters, 2019-02, Vol.871 (2), p.L28</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-eb64266bc00015c825d23f5e7a1936c96bc822a69c1d9dc9ee235cb6b7d250f43</citedby><cites>FETCH-LOGICAL-c374t-eb64266bc00015c825d23f5e7a1936c96bc822a69c1d9dc9ee235cb6b7d250f43</cites><orcidid>0000-0001-8605-2159 ; 0000-0001-9046-6688 ; 0000-0002-7018-6862 ; 0000-0001-9427-7366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaffcf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/aaffcf$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Feng, Xueshang</creatorcontrib><creatorcontrib>Xiong, Ming</creatorcontrib><creatorcontrib>Jiang, Chaowei</creatorcontrib><title>Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Temporal evolution of magnetic structures of the solar active region (AR) NOAA AR 11158, is simulated with our magnetohydrodynamic (MHD) simulation models using time-dependent solar-surface electric field or plasma flow data. Using the Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetogram data, the solar-surface boundary electric field maps are derived with our recently developed algorithm to reproduce the temporal evolution of solar-surface vector magnetic field as observed. The plasma motion velocity maps are calculated through the Differential Affine Velocity Estimator for Vector Magnetograms. In both data-driven models, the simulated evolutionary magnetic field structures at strong-field low-beta regions appear near force-free state, as the current helicity density ( ) are roughly constant along each field line. Although the magnetic energy simulated with the newly developed plasma-velocity-driven model is about 10% of that by the electric-field driven model, the plasma-velocity-driven model can maintain the frozen-in condition, and evolution of current and free energy generated by the solar-surface plasma motions can be spatially and temporally traced. The present MHD simulation models for AR system can be a step toward better, more realistic data-driven evolutionary modeling, in particular, establishing boundary treatments for introducing the time-dependent observation data in a physically and mathematically consistent manner.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Evolution</subject><subject>Evolutionary algorithms</subject><subject>Fluid flow</subject><subject>Free energy</subject><subject>Helicity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic simulation</subject><subject>Plasma</subject><subject>Solar activity</subject><subject>Solar activity regions</subject><subject>Solar energy</subject><subject>Solar magnetic field</subject><subject>Solar observatories</subject><subject>Sun: activity</subject><subject>Sun: magnetic fields</subject><subject>sunspots</subject><subject>Time dependence</subject><subject>Velocity</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1P20AQtaoilQbuPY7Uaw3rtb22jwgIiRRURKBXa7I7my6yvems3Sq_sH-rDkbh1NOM5n3Mk14UfUnERVpmxaUUWRKXMkkvEa3V9kN0ejx9PO4i_xR9DuFFCClUUp5Gf-9x21Hvf-4Ne7PvsHUa1q4dGuyd7wJYz7D2DTJc6d79Jnik7SswBNdt4cm1FAdiRwFusEfwFtYDW9QEDw2GFmHe-D-AnYHbhnTPo__cUWNg2VliJgOWfQsLapwP5MIhwBRqXJYtbonhxygccxzPk8E9YRiYWur6cBadWGwCnb_NWfQ8v326XsSr73fL66tVrNMi62PaqEwqtdFCiCTXpcyNTG1OBSZVqnQ1IqWUqCqdmMroikimud6oTWFkLmyWzqKvk--O_a-BQl-_-IG78WUtU5WrXBaVHFliYmn2ITDZeseuRd7XiagPddWHPupDN_VU1yj5Nkmc3717_pf-D0Fbm8Y</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Hayashi, Keiji</creator><creator>Feng, Xueshang</creator><creator>Xiong, Ming</creator><creator>Jiang, Chaowei</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8605-2159</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0002-7018-6862</orcidid><orcidid>https://orcid.org/0000-0001-9427-7366</orcidid></search><sort><creationdate>20190201</creationdate><title>Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements</title><author>Hayashi, Keiji ; Feng, Xueshang ; Xiong, Ming ; Jiang, Chaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-eb64266bc00015c825d23f5e7a1936c96bc822a69c1d9dc9ee235cb6b7d250f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Evolution</topic><topic>Evolutionary algorithms</topic><topic>Fluid flow</topic><topic>Free energy</topic><topic>Helicity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic simulation</topic><topic>Plasma</topic><topic>Solar activity</topic><topic>Solar activity regions</topic><topic>Solar energy</topic><topic>Solar magnetic field</topic><topic>Solar observatories</topic><topic>Sun: activity</topic><topic>Sun: magnetic fields</topic><topic>sunspots</topic><topic>Time dependence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Keiji</creatorcontrib><creatorcontrib>Feng, Xueshang</creatorcontrib><creatorcontrib>Xiong, Ming</creatorcontrib><creatorcontrib>Jiang, Chaowei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayashi, Keiji</au><au>Feng, Xueshang</au><au>Xiong, Ming</au><au>Jiang, Chaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>871</volume><issue>2</issue><spage>L28</spage><pages>L28-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Temporal evolution of magnetic structures of the solar active region (AR) NOAA AR 11158, is simulated with our magnetohydrodynamic (MHD) simulation models using time-dependent solar-surface electric field or plasma flow data. Using the Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetogram data, the solar-surface boundary electric field maps are derived with our recently developed algorithm to reproduce the temporal evolution of solar-surface vector magnetic field as observed. The plasma motion velocity maps are calculated through the Differential Affine Velocity Estimator for Vector Magnetograms. In both data-driven models, the simulated evolutionary magnetic field structures at strong-field low-beta regions appear near force-free state, as the current helicity density ( ) are roughly constant along each field line. Although the magnetic energy simulated with the newly developed plasma-velocity-driven model is about 10% of that by the electric-field driven model, the plasma-velocity-driven model can maintain the frozen-in condition, and evolution of current and free energy generated by the solar-surface plasma motions can be spatially and temporally traced. The present MHD simulation models for AR system can be a step toward better, more realistic data-driven evolutionary modeling, in particular, establishing boundary treatments for introducing the time-dependent observation data in a physically and mathematically consistent manner.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/aaffcf</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8605-2159</orcidid><orcidid>https://orcid.org/0000-0001-9046-6688</orcidid><orcidid>https://orcid.org/0000-0002-7018-6862</orcidid><orcidid>https://orcid.org/0000-0001-9427-7366</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2019-02, Vol.871 (2), p.L28 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_proquest_journals_2365652792 |
source | IOP Publishing Free Content |
subjects | Computational fluid dynamics Computer simulation Electric fields Evolution Evolutionary algorithms Fluid flow Free energy Helicity Magnetic fields Magnetohydrodynamic simulation Plasma Solar activity Solar activity regions Solar energy Solar magnetic field Solar observatories Sun: activity Sun: magnetic fields sunspots Time dependence Velocity |
title | Magnetohydrodynamic Simulations for Solar Active Regions using Time-series Data of Surface Plasma Flow and Electric Field Inferred from Helioseismic Magnetic Imager Vector Magnetic Field Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20Simulations%20for%20Solar%20Active%20Regions%20using%20Time-series%20Data%20of%20Surface%20Plasma%20Flow%20and%20Electric%20Field%20Inferred%20from%20Helioseismic%20Magnetic%20Imager%20Vector%20Magnetic%20Field%20Measurements&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Hayashi,%20Keiji&rft.date=2019-02-01&rft.volume=871&rft.issue=2&rft.spage=L28&rft.pages=L28-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/aaffcf&rft_dat=%3Cproquest_O3W%3E2365652792%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365652792&rft_id=info:pmid/&rfr_iscdi=true |